REFERENCES
1. Ling F. The garrison system and the internalization of frontier areas in Guizhou during the ming dynasty. Jinan, Shandong: Shandong University; 2023. (In Chinese).
2. Yang Y, Hu J, Liu DJ, Li YJ, Hu Y, Hu SL. Patial differentiation and influencing factors of ethnic traditional villages in Guizhou province - based on six types of ethnic traditional villages. J Arid Land Resour Environ. 2022;36:178-85.
3. Zhao X. A study on karst settlement culture in Guizhou. J Guizhou Normal University (Natural Science Edition). 2010;28:104-8.
4. Tan H, Wang R, Wang CC. Fine-scale genetic profile and admixture history of two hmong-mien-speaking miao tribes from Southwest China inferred from genome-wide data. Hum Biol. 2021;93:179-99.
5. Zhang XX, Yu YQ, Tian W, et al. Single nucleotide polymorphism of 21 Y-chromosomal loci in seven ethnic minorities of kra-dai language in Guizhou province. Acta Sci Nat Univ Sunyatseni. 2020;59:125-32.
6. Sun H, Xu S, Long F, et al. Forensic and population genetic analysis of Han, Miao, Tujia and Gelao populations from Zunyi (Southwest China) on 15 autosomal short tandem repeat loci. Forensic Sci Int Genet. 2016;25:e20-1.
7. Liu C, Wang SY, Zhao M, et al. Mitochondrial DNA polymorphisms in Gelao ethnic group residing in Southwest China. Forensic Sci Int Genet. 2011;5:e4-10.
8. He Y, Ren LY, Shan KR, Zhang T, Wang CJ, Guan ZZ. Characterization of polymorphisms in the mitochondrial DNA of twelve ethnic groups in the Guizhou province of China. Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27:365-70.
9. Kidd K, Pakstis A, Speed W, et al. Microhaplotype loci are a powerful new type of forensic marker. Forensic Sci Int Genet Suppl Ser. 2013;4:e123-4.
10. Oldoni F, Kidd KK, Podini D. Microhaplotypes in forensic genetics. Forensic Sci Int Genet. 2019;38:54-69.
11. Zhou J, Wang Y, Xu E. Research progress on application of microhaplotype in forensic genetics. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2021;50:777-82.
12. Rodrigues P, Pinto N, Otterlund T, et al. Enhancing the potential of microhaplotypes for forensic applications: insights from afghan and somali populations. Genes. 2025;16:532.
13. Barros Rodrigues ML, Rodrigues MP, Norton HL, Mendes-Junior CT, Simões AL, Lawson DJ. Large-scale selection of highly informative microhaplotypes for ancestry inference and population specific informativeness. Forensic Sci Int Genet. 2025;74:103153.
14. Liu J, Su Y, Wen Y, et al. Massively parallel sequencing of 74 microhaplotypes and forensic characteristics in three Chinese Sino-Tibetan populations. Forensic Sci Int Genet. 2023;66:102905.
15. Oldoni F, Yoon L, Wootton SC, Lagacé R, Kidd KK, Podini D. Population genetic data of 74 microhaplotypes in four major U.S. population groups. Forensic Sci Int Genet. 2020;49:102398.
16. Kidd KK, Speed WC, Pakstis AJ, et al. Evaluating 130 microhaplotypes across a global set of 83 populations. Forensic Sci Int Genet. 2017;29:29-37.
17. Yang SB, Lee JE, Lee HY. Forensic genetic analysis of single-nucleotide polymorphisms and microhaplotypes in Koreans through next-generation sequencing using precision ID identity panel. Genes Genomics. 2023;45:1281-93.
18. Staadig A, Tillmar A. Evaluation of microhaplotypes in forensic kinship analysis from a Swedish population perspective. Int J Legal Med. 2021;135:1151-60.
19. Gao S, Wang Q, Gao Y, et al. Development and validation of a multiplex panel with 232 microhaplotypes and software for forensic kinship analysis. Forensic Sci Int Genet. 2025;76:103212.
20. Pakstis AJ, Gandotra N, Speed WC, Murtha M, Scharfe C, Kidd KK. The population genetics characteristics of a 90 locus panel of microhaplotypes. Hum Genet. 2021;140:1753-73.
21. Bulbul O, Pakstis AJ, Soundararajan U, et al. Ancestry inference of 96 population samples using microhaplotypes. Int J Legal Med. 2018;132:703-11.
22. Standage DS, Mitchell RN. MicroHapDB: a portable and extensible database of all published microhaplotype marker and frequency data. Front Genet. 2020;11:781.
23. Xue J, Tan M, Wu Q, et al. MHBase: a comprehensive database of short microhaplotypes for advancing forensic genetic analysis. Forensic Sci Int Genet. 2024;71:103062.
24. Gu C, Huo W, Huang X, et al. Developmental and validation of a novel small and high-efficient panel of microhaplotypes for forensic genetics by the next generation sequencing. BMC Genomics. 2024;25:958.
25. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114-20.
26. Schneider VA, Graves-Lindsay T, Howe K, et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017;27:849-64.
27. Guo Y, Dai Y, Yu H, Zhao S, Samuels DC, Shyr Y. Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis. Genomics. 2017;109:83-90.
28. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754-60.
29. Gouy A, Zieger M. STRAF-A convenient online tool for STR data evaluation in forensic genetics. Forensic Sci Int Genet. 2017;30:148-51.
30. Ota T. DISPAN: genetic distance and phylogenetic analysis. University Park, PA: Pennsylvania State University; 1993.
31. Rousset F. GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour. 2008;8:103-6.
32. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596-9.
33. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567-87.
34. Earl DA, vonHoldt BM. Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour. 2012;4:359-61.
35. Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801-6.
36. Francis RM. Pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour. 2017;17:27-32.
37. Chen S, Lei C, Zhao X, Pan Y, Lu D, Xu S. AncestryPainter 2.0: visualizing ancestry composition and admixture history graph. Genome Biol Evol. 2024;16:evae249.
38. Li S, Zhang H, Luo L, Chen P. Comparative study of genetic relationships among seven ethnic groups in Guizhou province. J Zunyi Medical University. 2023;46:271-77.
39. Haber M, Doumet-Serhal C, Scheib C, et al. Continuity and admixture in the last five millennia of levantine history from ancient canaanite and present-day lebanese genome sequences. Am J Hum Genet. 2017;101:274-82.
40. Chen J, Zhang H, Yang M, et al. Genomic formation of tibeto-burman speaking populations in Guizhou, Southwest China. BMC Genomics. 2023;24:672.
41. Zhang Z, Zhang Y, Wang Y, et al. The tibetan-Yi region is both a corridor and a barrier for human gene flow. Cell Rep. 2022;39:110720.
42. Chen J, Wang M, Duan S, et al. Genetic history and biological adaptive landscape of the Tujia people inferred from shared haplotypes and alleles. Hum Genomics. 2024;18:104.
43. He G, Li Y, Wang M, et al. Fine-scale genetic structure of Tujia and central Han Chinese revealing massive genetic admixture under language borrowing. J Syst Evol. 2021;59:1-20.
44. Li K. A preliminary study on the origin of the Tujia ethnic group. Caizhi. 2013:1-248 (In Chinese). Available from: https://kns.cnki.net/kcms2/article/abstract?v=GWCpWhBv_VM2yu41sHLEX4ek55S1niqtfum6KXuOQrcR28V5qTH_Nht2WpXKPt94GLsBeb-uH4PPg_Hj42aPzSufx5-QR3ymFDkeur34Av_49EWe8orsWGOeoEjl8pSjRteQRiEbV8apGMbW4kiw7r5BnjaEZpSJ9R7aT3m1YcuVNpgFDe0Ktw==&uniplatform=NZKPT&language=CHS [Last accessed on 25 Aug 2025].
45. Zhao YB, Zhang Y, Zhang QC, et al. Ancient DNA reveals that the genetic structure of the northern Han Chinese was shaped prior to 3,000 years ago. PLoS One. 2015;10:e0125676.
46. Wen B, Li H, Lu D, et al. Genetic evidence supports demic diffusion of Han culture. Nature. 2004;431:302-5.