REFERENCES

1. Chakraborty A, Yu ASL. Prospects for gene therapy in polycystic kidney disease. Curr Opin Nephrol Hypertens. 2025;34:121-7.

2. Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. Polycystic kidney disease. Nat Rev Dis Primers. 2018;4:50.

3. Muñoz JJ, Anauate AC, Amaral AG, et al. Identification of housekeeping genes for microRNA expression analysis in kidney tissues of Pkd1 deficient mouse models. Sci Rep. 2020;10:231.

4. Gall E, Torres VE, Harris PC. Genetic complexity of autosomal dominant polycystic kidney and liver diseases. J Am Soc Nephrol. 2018;29:13-23.

5. Tsai YC, Teng IL, Jiang ST, Lee YC, Chiou YY, Cheng FY. Safe nanocomposite-mediated efficient delivery of MicroRNA plasmids for autosomal dominant polycystic kidney disease (ADPKD) therapy. Adv Healthc Mater. 2019;8:e1801358.

6. Gall E, Alam A, Perrone RD. Autosomal dominant polycystic kidney disease. Lancet. 2019;393:919-35.

7. Jdiaa SS, Mustafa RA, Yu ASL. Treatment of autosomal-dominant polycystic kidney disease. Am J Kidney Dis. 2025;85:491-500.

8. Yheskel M, Patel V. Therapeutic microRNAs in polycystic kidney disease. Curr Opin Nephrol Hypertens. 2017;26:282-9.

9. Woo YM, Park JH. microRNA biomarkers in cystic diseases. BMB Rep. 2013;46:338-45.

10. Iglesias CG, Torres VE, Offord KP, Holley KE, Beard CM, Kurland LT. Epidemiology of adult polycystic kidney disease, Olmsted County, Minnesota: 1935-1980. Am J Kidney Dis. 1983;2:630-9.

11. Dalgaard OZ. Bilateral polycystic disease of the kidneys; a follow-up of two hundred and eighty-four patients and their families. Acta Med Scand Suppl. 1957;328:1-255.

12. Wang S, Kang Y, Xie H. PKD2: An important membrane protein in organ development. Cells. 2024;13:1722.

13. González-Perrett S, Kim K, Ibarra C, et al. Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci U S A. 2001;98:1182-7.

14. Koulen P, Cai Y, Geng L, et al. Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol. 2002;4:191-7.

15. Kleene SJ, Kleene NK. The native TRPP2-dependent channel of murine renal primary cilia. Am J Physiol Renal Physiol. 2017;312:F96-108.

16. Liu X, Vien T, Duan J, Sheu SH, DeCaen PG, Clapham DE. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. Elife. 2018;7:e33183.

17. Köttgen M, Buchholz B, Garcia-Gonzalez MA, et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol. 2008;182:437-47.

18. Djenoune L, Mahamdeh M, Truong TV, et al. Cilia function as calcium-mediated mechanosensors that instruct left-right asymmetry. Science. 2023;379:71-8.

19. Katoh TA, Omori T, Mizuno K, et al. Immotile cilia mechanically sense the direction of fluid flow for left-right determination. Science. 2023;379:66-71.

20. Chowdhury P, Sinha D, Poddar A, Chetluru M, Chen Q. The Mechanosensitive Pkd2 channel modulates the recruitment of myosin II and actin to the cytokinetic contractile ring. J Fungi. 2024;10:455.

21. Zhou JX, Li X. Non-coding RNAs in hereditary kidney disorders. Int J Mol Sci. 2021;22:3014.

22. Torres VE. Pro: Tolvaptan delays the progression of autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2019;34:30-4.

23. Lu H, Galeano MCR, Ott E, et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat Genet. 2017;49:1025-34.

24. Goggolidou P, Richards T. The genetics of autosomal recessive polycystic kidney disease (ARPKD). Biochim Biophys Acta Mol Basis Dis. 2022;1868:166348.

25. Mallawaarachchi AC, Lundie B, Hort Y, et al. Genomic diagnostics in polycystic kidney disease: an assessment of real-world use of whole-genome sequencing. Eur J Hum Genet. 2021;29:760-70.

26. Wilson EM, Choi J, Torres VE, Somlo S, Besse W. Large Deletions in GANAB and SEC63 explain 2 cases of polycystic kidney and liver disease. Kidney Int Rep. 2020;5:727-31.

27. Sutters M. Polycystic Kidney Disease, Autosomal Dominant. In: Ganten D, Ruckpaul K, Birchmeier W, et al., editors. Encyclopedic reference of genomics and proteomics in molecular medicine. Berlin, Heidelberg: Springer; 2005. pp. 1435-9. Available from:https://link.springer.com/referenceworkentry/10.1007/3-540-29623-9_1380#citeas [accessed 29 May 2025].

28. Porath B, Gainullin VG, Cornec-Le Gall E, et al; Genkyst Study Group. Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet. 2016;98:1193-207.

29. Boletta A, Caplan MJ. Physiologic mechanisms underlying polycystic kidney disease. Physiol Rev. 2025;105:1553-607.

30. Senum SR, Li YSM, Benson KA, et al; Genomics England Research Consortium. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am J Hum Genet. 2022;109:136-56.

31. Dordoni C, Zeni L, Toso D, et al. Monoallelic pathogenic IFT140 variants are a common cause of autosomal dominant polycystic kidney disease-spectrum phenotype. Clin Kidney J. 2024;17:sfae026.

32. Sergi CM, Guerra L, Hager J. Autosomal dominant polycystic kidney disease-related multifocal renal cell carcinoma: a narrative iconographic review. Int J Mol Sci. 2025;26:3965.

33. Armour EA, Carson RP, Ess KC. Cystogenesis and elongated primary cilia in Tsc1-deficient distal convoluted tubules. Am J Physiol Renal Physiol. 2012;303:F584-92.

34. Halbritter J, Porath JD, Diaz KA, et al; GPN Study Group. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum Genet. 2013;132:865-84.

35. Li X. Epigenetics and cell cycle regulation in cystogenesis. Cell Signal. 2020;68:109509.

36. Shao A, Chan SC, Igarashi P. Role of transcription factor hepatocyte nuclear factor-1β in polycystic kidney disease. Cell Signal. 2020;71:109568.

37. Ruiz-Manriquez LM, Ledesma Pacheco SJ, Medina-Gomez D, et al. A brief review on the regulatory roles of microRNAs in Cystic diseases and their use as potential biomarkers. Genes. 2022;13:191.

38. Phua YL, Ho J. MicroRNAs in the pathogenesis of cystic kidney disease. Curr Opin Pediatr. 2015;27:219-26.

39. Pandey P, Qin S, Ho J, Zhou J, Kreidberg JA. Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease. BMC Syst Biol. 2011;5:56.

40. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9-26.

41. Lin F, Hiesberger T, Cordes K, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A. 2003;100:5286-91.

42. Kim S, Nie H, Nesin V, et al. The polycystin complex mediates Wnt/Ca2+ signalling. Nat Cell Biol. 2016;18:752-64.

43. Lal M, Song X, Pluznick JL, et al. Polycystin-1 C-terminal tail associates with beta-catenin and inhibits canonical Wnt signaling. Hum Mol Genet. 2008;17:3105-17.

44. de Stephanis L, Mangolini A, Servello M, et al. MicroRNA501-5p induces p53 proteasome degradation through the activation of the mTOR/MDM2 pathway in ADPKD cells. J Cell Physiol. 2018;233:6911-24.

45. Margaria JP, Campa CC, De Santis MC, Hirsch E, Franco I. The PI3K/Akt/mTOR pathway in polycystic kidney disease: A complex interaction with polycystins and primary cilium. Cell Signal. 2020;66:109468.

46. Dere R, Wilson PD, Sandford RN, Walker CL. Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR. PLoS One. 2010;5:e9239.

47. Alzahrani OR, Alatwi HE, Alharbi AA, et al. Identification and characterization of novel mutations in chronic kidney disease (CKD) and autosomal dominant polycystic kidney disease (ADPKD) in saudi subjects by whole-exome sequencing. Medicina. 2022;58:1657.

48. Mostov KE. mTOR is out of control in polycystic kidney disease. Proc Natl Acad Sci U S A. 2006;103:5247-8.

49. Liu Y, Pejchinovski M, Wang X, et al. Dual mTOR/PI3K inhibition limits PI3K-dependent pathways activated upon mTOR inhibition in autosomal dominant polycystic kidney disease. Sci Rep. 2018;8:5584.

50. Zhang L, Li LX, Zhou JX, Harris PC, Calvet JP, Li X. RNA helicase p68 inhibits the transcription and post-transcription of Pkd1 in ADPKD. Theranostics. 2020;10:8281-97.

51. Ali H, Malik MZ, Abu-Farha M, et al. Global analysis of urinary extracellular vesicle small RNAs in autosomal dominant polycystic kidney disease. J Gene Med. 2024;26:e3674.

52. Mariotti V, Fiorotto R, Cadamuro M, Fabris L, Strazzabosco M. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep. 2021;3:100251.

53. Leierer J, Perco P, Hofer B, et al. Coregulation analysis of mechanistic biomarkers in autosomal dominant polycystic kidney disease. Int J Mol Sci. 2021;22:6885.

54. Coban M, Inci A. The association of serum angiogenic growth factors with renal structure and function in patients with adult autosomal dominant polycystic kidney disease. Int Urol Nephrol. 2018;50:1293-300.

55. Lee EJ, Seo E, Kim JW, et al. TAZ/Wnt-β-catenin/c-MYC axis regulates cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A. 2020;117:29001-12.

56. Lakhia R, Mishra A, Biggers L, et al. Enhancer and super-enhancer landscape in polycystic kidney disease. Kidney Int. 2023;103:87-99.

57. Fox JC, Hahnenstein ST, Hassan F, Grund A, Haffner D, Ziegler WH. Defects of renal tubular homeostasis and cystogenesis in the Pkhd1 knockout. iScience. 2024;27:109487.

58. Ramalingam H, Yheskel M, Patel V. Modulation of polycystic kidney disease by non-coding RNAs. Cell Signal. 2020;71:109548.

59. Fragiadaki M. Lessons from microRNA biology: top key cellular drivers of autosomal dominant polycystic kidney disease. Biochim Biophys Acta Mol Basis Dis. 2022;1868:166358.

60. Carney EF. Polycystic kidney disease: microRNA-17: a new drug target for ADPKD. Nat Rev Nephrol. 2017;13:260.

61. Hajarnis S, Lakhia R, Yheskel M, et al. microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nat Commun. 2017;8:14395.

62. Lee SO, Masyuk T, Splinter P, et al. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest. 2008;118:3714-24.

63. Yheskel M, Lakhia R, Cobo-Stark P, Flaten A, Patel V. Anti-microRNA screen uncovers miR-17 family within miR-17~92 cluster as the primary driver of kidney cyst growth. Sci Rep. 2019;9:1920.

64. Woo YM, Kim DY, Koo NJ, et al. Profiling of miRNAs and target genes related to cystogenesis in ADPKD mouse models. Sci Rep. 2017;7:14151.

65. Lakhia R, Hajarnis S, Williams D, et al. MicroRNA-21 aggravates cyst growth in a model of polycystic kidney disease. J Am Soc Nephrol. 2016;27:2319-30.

66. Dweep H, Sticht C, Kharkar A, Pandey P, Gretz N. Parallel analysis of mRNA and microRNA microarray profiles to explore functional regulatory patterns in polycystic kidney disease: using PKD/Mhm rat model. PLoS One. 2013;8:e53780.

67. Sun L, Zhu J, Wu M, et al. Inhibition of MiR-199a-5p reduced cell proliferation in autosomal dominant polycystic kidney disease through targeting CDKN1C. Med Sci Monit. 2015;21:195-200.

68. Lai S, Mastroluca D, Perrotta AM, et al. MicroRNA and renal fibrosis in autosomal dominant polycystic kidney disease: a longitudinal study. J Nephrol. 2025;38:153-62.

69. Sun L, Hu C, Wang Z, Zhang X. MiR-182 inhibits kidney fibrosis by regulating transforming growth factor β1/Smad3 pathway in autosomal dominant polycystic kidney disease. IUBMB Life. 2020;72:1340-8.

70. Chu AS, Friedman JR. A role for microRNA in cystic liver and kidney diseases. J Clin Invest. 2008;118:3585-7.

71. Kim DY, Woo YM, Lee S, et al. Impact of miR-192 and miR-194 on cyst enlargement through EMT in autosomal dominant polycystic kidney disease. FASEB J. 2019;33:2870-84.

72. Wessely O, Tran U. Small RNAs have a big effect on polycystic kidney disease. J Am Soc Nephrol. 2012;23:1909-10.

73. Hajarnis SS, Patel V, Aboudehen K, et al. Transcription factor hepatocyte nuclear factor-1β (HNF-1β) regulates microRNA-200 expression through a long noncoding RNA. J Biol Chem. 2015;290:24793-805.

74. Boutet A, De Frutos CA, Maxwell PH, Mayol MJ, Romero J, Nieto MA. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J. 2006;25:5603-13.

75. Aboudehen K, Noureddine L, Cobo-Stark P, et al. Hepatocyte nuclear factor-1β regulates urinary concentration and response to hypertonicity. J Am Soc Nephrol. 2017;28:2887-900.

76. Shin Y, Kim DY, Ko JY, Woo YM, Park JH. Regulation of KLF12 by microRNA-20b and microRNA-106a in cystogenesis. FASEB J. 2018;32:3574-82.

77. Eckberg K, Weisser I, Buttram D, Somia N, Igarashi P, Aboudehen KS. Small hairpin inhibitory RNA delivery in the metanephric organ culture identifies long noncoding RNA Pvt1 as a modulator of cyst growth. Am J Physiol Renal Physiol. 2022;323:F335-48.

78. Aboudehen K, Farahani S, Kanchwala M, et al. Long noncoding RNA Hoxb3os is dysregulated in autosomal dominant polycystic kidney disease and regulates mTOR signaling. J Biol Chem. 2018;293:9388-98.

79. Yang Y, Tang F, Wei F, et al. Silencing of long non-coding RNA H19 downregulates CTCF to protect against atherosclerosis by upregulating PKD1 expression in ApoE knockout mice. Aging (Albany NY). 2019;11:10016-30.

80. Weisser I, Eckberg K, D’Amico S, Buttram D, Aboudehen K. Ablation of long noncoding RNA Hoxb3os exacerbates cystogenesis in mouse polycystic kidney disease. J Am Soc Nephrol. 2024;35:41-55.

81. Wang X. Down-regulation of lncRNA-NEAT1 alleviated the non-alcoholic fatty liver disease via mTOR/S6K1 signaling pathway. J Cell Biochem. 2018;119:1567-74.

82. Song P, Chen Y, Liu Z, et al. LncRNA MALAT1 aggravates renal tubular injury via activating LIN28A and the Nox4/AMPK/mTOR signaling axis in diabetic nephropathy. Front Endocrinol. 2022;13:895360.

83. Lakhia R, Yheskel M, Flaten A, et al. Interstitial microRNA miR-214 attenuates inflammation and polycystic kidney disease progression. JCI Insight. 2020;5:e133785.

84. Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17:205-11.

85. Zonneveld AJ, Kölling M, Bijkerk R, Lorenzen JM. Circular RNAs in kidney disease and cancer. Nat Rev Nephrol. 2021;17:814-26.

86. Li Y, Chai Y. Circ_0040994 depletion alleviates lipopolysaccharide-induced HK2 cell injury through miR-17-5p/TRPM7 axis. Environ Toxicol. 2023;38:2585-94.

87. Kong H, Qiao Y, Qi D, et al. circ_0002970 promotes fibroblast-like synoviocytes invasion and the inflammatory response through Hippo/YAP signaling to induce CTGF/CCN1 expression in rheumatoid arthritis. Arthritis Res Ther. 2025;27:97.

88. Gupta G, Afzal M, Goyal A, et al. piRNAs in leukemogenesis: Mechanisms, biomarkers, and therapeutic implications. Clin Chim Acta. 2025;571:120220.

89. Ali H, Malik MZ, Abu-Farha M, et al. Dysregulated urinary extracellular vesicle small RNAs in diabetic nephropathy: implications for diagnosis and therapy. J Endocr Soc. 2024;8:bvae114.

90. ’t Hart LM, de Klerk JA, Bouland GA, et al. Small RNA sequencing reveals snoRNAs and piRNA-019825 as novel players in diabetic kidney disease. Endocrine. 2024;86:194-203.

91. Xu Y, Liu H, Zhang Y, et al. piRNAs and circRNAs acting as diagnostic biomarkers in clear cell renal cell carcinoma. Sci Rep. 2025;15:7774.

92. Kocyigit I, Taheri S, Sener EF, et al. Serum micro-rna profiles in patients with autosomal dominant polycystic kidney disease according to hypertension and renal function. BMC Nephrol. 2017;18:179.

93. Kocyigit I, Taheri S, Uysal C, et al. Predicting progression of autosomal dominant polycystic kidney disease by changes in the telomeric epigenome. Cells. 2022;11:3300.

94. Magayr TA, Song X, Streets AJ, et al. Global microRNA profiling in human urinary exosomes reveals novel disease biomarkers and cellular pathways for autosomal dominant polycystic kidney disease. Kidney Int. 2020;98:420-35.

95. Ghanem A, Borghol AH, Munairdjy Debeh FG, et al. Biomarkers of kidney disease progression in ADPKD. Kidney Int Rep. 2024;9:2860-82.

96. Havens MA, Hinrich AJ, Rigo F, Hastings ML. Elevating microRNA levels by targeting biogenesis with steric-blocking antisense oligonucleotides. RNA. 2024;30:1543-53.

97. Kulesza A, Kulesza A, Fliszkiewicz M, Łabuś A, Pączek L, Niemczyk M. miRNA-16 as a predictive factor for intracranial aneurysms in autosomal dominant polycystic kidney disease. Neurol Neurochir Pol. 2021;55:306-9.

98. Szeto CC, So H, Poon PY, et al. Urinary long non-coding RNA levels as biomarkers of lupus nephritis. Int J Mol Sci. 2023;24:11813.

99. Dieter C, Lemos NE, Girardi E, et al. The lncRNA MALAT1 is upregulated in urine of type 1 diabetes mellitus patients with diabetic kidney disease. Genet Mol Biol. 2023;46:e20220291.

100. Xie Z, Gan G, Zhou G, et al. Urinary circular RNA panels to detect HBV-related hepatocellular carcinoma: a multicenter, large-scale, case-control study. J Natl Compr Canc Netw. 2024;23:e247058.

101. Patel V, Williams D, Hajarnis S, et al. miR-17~92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci U S A. 2013;110:10765-70.

102. Lee EC, Valencia T, Allerson C, et al. Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat Commun. 2019;10:4148.

103. Regulus therapeutics announces positive clinical and regulatory updates from its autosomal dominant polycystic kidney disease (ADPKD) program for farabursen (RGLS8429). 2025; Available from: https://www.prnewswire.com/news-releases/regulus-therapeutics-announces-positive-clinical-and-regulatory-updates-from-its-autosomal-dominant-polycystic-kidney-disease-adpkd-program-for-farabursen-rgls8429-302362731.html [accessed 28 May 2025].

104. Papi C, Gasparello J, Zurlo M, Cosenza LC, Gambari R, Finotti A. The cystic fibrosis transmembrane conductance regulator gene (CFTR) is under post-transcriptional control of microRNAs: analysis of the effects of agomiRNAs mimicking miR-145-5p, miR-101-3p, and miR-335-5p. Noncoding RNA. 2023;9:29.

105. Persu A, Devuyst O, Lannoy N, et al. CF gene and cystic fibrosis transmembrane conductance regulator expression in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2000;11:2285-96.

106. Yanda MK, Tomar V, Cebotaru L. Therapeutic potential for CFTR correctors in autosomal recessive polycystic kidney disease. Cell Mol Gastroenterol Hepatol. 2021;12:1517-29.

107. Niemczyk M, Gładki A, Gromadka A, Zielenkiewicz P, Pączek L. Potential role of plant microRNAs in the pathogenesis of autosomal dominant polycystic kidney disease: an in silico study. Pol Arch Intern Med. 2021;131:306-8.

108. Hino T, Omura SN, Nakagawa R, et al. An AsCas12f-based compact genome-editing tool derived by deep mutational scanning and structural analysis. Cell. 2023;186:4920-4935.e23.

109. Chen H, Liu D, Guo J, et al. Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat Biotechnol. 2025;43:194-203.

110. Jerusalinsky D, Baez MV, Epstein AL. Herpes simplex virus type 1-based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases. J Physiol Paris. 2012;106:2-11.

111. Aulicino F, Pelosse M, Toelzer C, et al. Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus. Nucleic Acids Res. 2022;50:7783-99.

112. Zhu J, Tao P, Mahalingam M, et al. A prokaryotic-eukaryotic hybrid viral vector for delivery of large cargos of genes and proteins into human cells. Sci Adv. 2019;5:eaax0064.

113. Zheng Q, Reid G, Eccles MR, Stayner C. Non-coding RNAs as potential biomarkers and therapeutic targets in polycystic kidney disease. Front Physiol. 2022;13:1006427.

114. Subhash S, Vijayvargiya S, Parmar A, Sandhu J, Simmons J, Raina R. Reactive oxygen species in cystic kidney disease. Antioxidants. 2024;13:1186.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/