REFERENCES

1. Bokhari SRA, Zulfiqar H, Hariz A. Fabry Disease. Treasure Island, FL: StatPearls Publishing; 2025.

2. Chin SJ, Fuller M. Prevalence of lysosomal storage disorders in Australia from 2009 to 2020. Lancet Reg Health West Pac. 2022;19:100344.

3. Thurberg BL, Rennke H, Colvin RB, et al. Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int. 2002;62:1933-46.

4. Delaleu N, Marti HP, Strauss P, et al. Systems analyses of the Fabry kidney transcriptome and its response to enzyme replacement therapy identified and cross-validated enzyme replacement therapy-resistant targets amenable to drug repurposing. Kidney Int. 2023;104:803-19.

5. Braun F, Abed A, Sellung D, et al. Accumulation of α-synuclein mediates podocyte injury in Fabry nephropathy. J Clin Invest. 2023;133:e157782.

6. Talbot A, Nicholls K, Fletcher JM, Fuller M. A simple method for quantification of plasma globotriaosylsphingosine: utility for Fabry disease. Mol Genet Metab. 2017;122:121-5.

7. Santostefano M, Cappuccilli M, Gibertoni D, et al. Fabry disease nephropathy: histological changes with nonclassical mutations and genetic variants of unknown significance. Am J Kidney Dis. 2023;82:581-96.e0.

8. Maruyama H, Miyata K, Mikame M, et al. Effectiveness of plasma lyso-Gb3 as a biomarker for selecting high-risk patients with Fabry disease from multispecialty clinics for genetic analysis. Genet Med. 2019;21:44-52.

9. Liebau MC, Braun F, Höpker K, et al. Dysregulated autophagy contributes to podocyte damage in Fabry's disease. PLoS One. 2013;8:e63506.

10. Wise AF, Krisnadevi IA, Bruell S, et al. Fabry disease podocytes reveal ferroptosis as a potential regulator of cell pathology. Kidney Int Rep. 2025;10:535-48.

11. Kim SY, Park S, Lee SW, et al. RIPK3 contributes to Lyso-Gb3-induced podocyte death. Cells. 2021;10:245.

12. Najafian B, Tøndel C, Svarstad E, Gubler MC, Oliveira JP, Mauer M. Accumulation of globotriaosylceramide in podocytes in Fabry nephropathy is associated with progressive podocyte loss. J Am Soc Nephrol. 2020;31:865-75.

13. Tebani A, Barbey F, Dormond O, et al. Deep next-generation proteomics and network analysis reveal systemic and tissue-specific patterns in Fabry disease. Transl Res. 2023;258:47-59.

14. Tebani A, Mauhin W, Abily-Donval L, et al. A proteomics-based analysis reveals predictive biological patterns in Fabry disease. J Clin Med. 2020;9:1325.

15. Ter Huurne M, Parker BL, Liu NQ, et al. GLA-modified RNA treatment lowers GB3 levels in iPSC-derived cardiomyocytes from Fabry-affected individuals. Am J Hum Genet. 2023;110:1600-5.

16. Wise AF, Saini S, Ricardo SD. The differentiation of human induced pluripotent stem cells into podocytes in vitro. Methods Mol Biol. 2022;2454:317-25.

17. Song B, Smink AM, Jones CV, et al. The directed differentiation of human iPS cells into kidney podocytes. PLoS One. 2012;7:e46453.

18. Lau RWK, Fisher C, Phan TK, et al. Modelling X-linked alport syndrome with induced pluripotent stem cell-derived podocytes. Kidney Int Rep. 2021;6:2912-7.

19. Aerts JM, Groener JE, Kuiper S, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci USA. 2008;105:2812-7.

20. Taguchi A, Ishii S, Mikame M, Maruyama H. Distinctive accumulation of globotriaosylceramide and globotriaosylsphingosine in a mouse model of classic Fabry disease. Mol Genet Metab Rep. 2023;34:100952.

21. Elsaid HOA, Rivedal M, Skandalou E, et al. Proteomic analysis unveils Gb3-independent alterations and mitochondrial dysfunction in a gla-/- zebrafish model of Fabry disease. J Transl Med. 2023;21:591.

22. Sanchez-Niño MD, Carpio D, Sanz AB, Ruiz-Ortega M, Mezzano S, Ortiz A. Lyso-Gb3 activates Notch1 in human podocytes. Hum Mol Genet. 2015;24:5720-32.

23. Beck M, Ramaswami U, Hernberg-Ståhl E, et al. Twenty years of the Fabry outcome survey (FOS): insights, achievements, and lessons learned from a global patient registry. Orphanet J Rare Dis. 2022;17:238.

24. Moore DF, Krokhin OV, Beavis RC, et al. Proteomics of specific treatment-related alterations in Fabry disease: a strategy to identify biological abnormalities. Proc Natl Acad Sci USA. 2007;104:2873-8.

25. Chimenti C, Hamdani N, Boontje NM, et al. Myofilament degradation and dysfunction of human cardiomyocytes in Fabry disease. Am J Pathol. 2008;172:1482-90.

26. Birket MJ, Raibaud S, Lettieri M, et al. A human stem cell model of Fabry disease implicates LIMP-2 accumulation in cardiomyocyte pathology. Stem Cell Rep. 2019;13:380-93.

27. Deegan PB, Goker-Alpan O, Geberhiwot T, et al. Venglustat, an orally administered glucosylceramide synthase inhibitor: assessment over 3 years in adult males with classic Fabry disease in an open-label phase 2 study and its extension study. Mol Genet Metab. 2023;138:106963.

28. Guérard N, Oder D, Nordbeck P, et al. Lucerastat, an iminosugar for substrate reduction therapy: tolerability, pharmacodynamics, and pharmacokinetics in patients with Fabry disease on enzyme replacement. Clin Pharmacol Ther. 2018;103:703-11.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/