REFERENCES

1. Sun YS, Zhao Z, Yang ZN, et al. Risk factors and preventions of breast cancer. Int J Biol Sci. 2017;13:1387-97.

2. Giaquinto AN, Sung H, Newman LA, et al. Breast cancer statistics 2024. CA Cancer J Clin. 2024;74:477-95.

3. Chaudhury AR, Iyer R, Iychettira KK, Sreedevi A. Diagnosis of invasive ductal carcinoma using image processing techniques. In Proceedings of the 2011 International Conference on Image Information Processing, 3-5 November 2011, Shimla, India; pp. 1-6.

4. Graydon J, Galloway S, Palmer-Wickham S, et al. Information needs of women during early treatment for breast cancer. J Adv Nurs. 1997;26:59-64.

5. Gamble P, Jaroensri R, Wang H, et al. Determining breast cancer biomarker status and associated morphological features using deep learning. Commun Med. 2021;1:14.

6. Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med. 2023;10:1060940.

7. Yen C, Lin CL, Chiang MC. Exploring the frontiers of neuroimaging: a review of recent advances in understanding brain functioning and disorders. Life. 2023;13:1472.

8. Nagpal P, Prakash A, Pradhan G, et al. MDCT imaging of the stomach: advances and applications. Br J Radiol. 2017;90:20160412.

9. Khalid A, Mehmood A, Alabrah A, et al. Breast cancer detection and prevention using machine learning. Diagnostics. 2023;13:3113.

10. Khan F, Khan MA, Abbas S, et al. Cloud-based breast cancer prediction empowered with soft computing approaches. J Healthc Eng. 2020;2020:8017496.

11. Al-Antari MA, Al-Masni MA, Choi MT, Han SM, Kim TS. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inf. 2018;117:44-54.

12. Naji MA, Filali SE, Aarika K, Benlahmar EH, Abdelouhahid RA, Debauche O. Machine learning algorithms for breast cancer prediction and diagnosis. Proc Comput Sci. 2021;191:487-92.

13. Nakagawa T, Hayashi K, Ogawa A, et al. Bone marrow carcinomatosis in a stage IV breast cancer patient treated by letrozole as first-line endocrine therapy. Case Rep Oncol. 2022;15:436-41.

14. Purrahman D, Mahmoudian-Sani MR, Saki N, Wojdasiewicz P, Kurkowska-Jastrzębska I, Poniatowski ŁA. Involvement of progranulin (PGRN) in the pathogenesis and prognosis of breast cancer. Cytokine. 2022;151:155803.

15. Ogundokun RO, Misra S, Douglas M, Damaševičius R, Maskeliūnas R. Medical internet-of-things based breast cancer diagnosis using hyperparameter-optimized neural networks. Future Int. 2022;14:153.

16. Sharmin S, Ahammad T, Talukder MA, Ghose P. A hybrid dependable deep feature extraction and ensemble-based machine learning approach for breast cancer detection. IEEE Access. 2023;11:87694-708.

17. Manikandan P, Durga U, Ponnuraja C. An integrative machine learning framework for classifying SEER breast cancer. Sci Rep. 2023;13:5362.

18. Little RJA, Rubin DB. Statistical analysis with missing data. Hoboken, NJ: John Wiley & Sons; 2002.

19. Raschka S, Mirjalili V. Python machine learning. Birmingham, UK: Packt Publishing Ltd.; 2017. Available from: http://radio.eng.niigata-u.ac.jp/wp/wp-content/uploads/2020/06/python-machine-learning-2nd.pdf [Last accessed on 22 Jan 2025].

20. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321-57.

21. Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12:55-67.

22. Quinlan JR. Induction of decision trees. Mach Learn. 1995;1:81-106.

23. Breiman L. Random forests. Mach Learn. 2001;45:5-32.

24. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273-97.

25. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533-6.

26. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inform Theory. 1967;13:21-7.

27. John GH, Langley P. Estimating continuous distributions in bayesian classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI). 1995; pp. 338-45.

28. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). 2016; pp. 785-94.

29. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. In: Lecture notes in computer science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995; pp. 23-37.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/