REFERENCES
1. Salari N, Fatahi B, Valipour E, et al. Global prevalence of Duchenne and Becker muscular dystrophy: a systematic review and meta-analysis. J Orthop Surg Res. 2022;17:96.
2. Duan D, Goemans N, Takeda S, Mercuri E, Aartsma-Rus A. Duchenne muscular dystrophy. Nat Rev Dis Primers. 2021;7:13.
4. Pane M, Mazzone ES, Sormani MP, et al. 6 Minute walk test in Duchenne MD patients with different mutations: 12 month changes. PLoS One. 2014;9:e83400.
5. McDonald CM, Henricson EK, Abresch RT, et al. PTC124-GD-007-DMD Study Group. The 6-minute walk test and other clinical endpoints in duchenne muscular dystrophy: reliability, concurrent validity, and minimal clinically important differences from a multicenter study. Muscle Nerve. 2013;48:357-68.
6. Topaloglu H. Duchenne muscular dystophy: a short review and treatment update. Iran J Child Neurol. 2021;15:9-15.
7. Elangkovan N, Dickson G. Gene therapy for Duchenne muscular dystrophy. J Neuromuscul Dis. 2021;8:S303-16.
8. Mozin E, Massouridès E, Mournetas V, et al. Dystrophin deficiency impairs cell junction formation during embryonic myogenesis. bioRxiv. 2024; doi: 10.1101/2023.12.05.569919.
9. Sohn J, Lu A, Tang Y, Wang B, Huard J. Activation of non-myogenic mesenchymal stem cells during the disease progression in dystrophic dystrophin/utrophin knockout mice. Hum Mol Genet. 2015;24:3814-29.
10. Bostick B, Ghosh A, Yue Y, Long C, Duan D. Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration. Gene Ther. 2007;14:1605-9.
11. Mendell JR, Campbell K, Rodino-Klapac L, et al. Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med. 2010;363:1429-37.
12. Bönnemann CG, Belluscio BA, Braun S, Morris C, Singh T, Muntoni F. Dystrophin immunity after gene therapy for Duchenne’s muscular dystrophy. N Engl J Med. 2023;388:2294-6.
13. Bladen CL, Salgado D, Monges S, et al. The TREAT-NMD DMD global database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat. 2015;36:395-402.
14. Sun C, Shen L, Zhang Z, Xie X. Therapeutic strategies for Duchenne muscular dystrophy: an update. Genes. 2020;11:837.
15. Duan D, Goemans N, Takeda S. et al. Duchenne muscular dystrophy. Nat Rev Dis Primers. 2021;7:13.
16. EMA recommends non-renewal of authorisation of Duchenne muscular dystrophy medicine translarna. Available from: https://www.ema.europa.eu/en/news/ema-recommends-non-renewal-authorisation-duchenne-muscular-dystrophy-medicine-translarna-0. [Last accessed on 24 Jan 2025].
17. Brun C, Suter D, Pauli C, et al. U7 snRNAs induce correction of mutated dystrophin pre-mRNA by exon skipping. Cell Mol Life Sci. 2003;60:557-66.
18. Takeda S, Clemens PR, Hoffman EP. Exon-skipping in Duchenne muscular dystrophy. J Neuromuscul Dis. 2021;8:S343-58.
19. Leckie J, Zia A, Yokota T. An updated analysis of exon-skipping applicability for Duchenne muscular dystrophy using the UMD-DMD database. Genes. 2024;15:1489.
20. Neri M, Torelli S, Brown S, et al. Dystrophin levels as low as 30% are sufficient to avoid muscular dystrophy in the human. Neuromuscul Disord. 2007;17:913-8.
21. Wells DJ. What is the level of dystrophin expression required for effective therapy of Duchenne muscular dystrophy? J Muscle Res Cell Motil. 2019;40:141-50.
22. Relizani K, Echevarría L, Zarrouki F, et al. Palmitic acid conjugation enhances potency of tricyclo-DNA splice switching oligonucleotides. Nucleic Acids Res. 2022;50:17-34.
23. Cochran M, Marks I, Albin T, et al. Structure-activity relationship of antibody-oligonucleotide conjugates: evaluating bioconjugation strategies for antibody-phosphorodiamidate morpholino oligomer conjugates for drug development. J Med Chem. 2024;67:14868-84.
24. Gushchina LV, Bradley AJ, Vetter TA, et al. Persistence of exon 2 skipping and dystrophin expression at 18 months after U7snRNA-mediated therapy in the Dup2 mouse model. Mol Ther Methods Clin Dev. 2023;31:101144.
25. Muntoni F, Signorovitch J, Sajeev G, et al. Association Française Contre Les Myopathies; on behalf of Universitaire Ziekenhuizen Leuven Group; PRO-DMD-01; The UK NorthStar Clinical Network; CCHMC; and The DMD Italian Group. DMD genotypes and motor function in Duchenne muscular dystrophy: a multi-institution meta-analysis with implications for clinical trials. Neurology. 2023;100:e1540-54.
26. Chemello F, Olson EN, Bassel-Duby R. CRISPR-editing therapy for Duchenne muscular dystrophy. Hum Gene Ther. 2023;34:379-87.
27. Lek A, Wong B, Keeler A, et al. Death after high-dose rAAV9 gene therapy in a patient with Duchenne’s muscular dystrophy. N Engl J Med. 2023;389:1203-10.
28. Romero NB, Braun S, Benveniste O, et al. Phase I study of dystrophin plasmid-based gene therapy in Duchenne/Becker muscular dystrophy. Hum Gene Ther. 2004;15:1065-76.
29. Wooddell C. Dose response in rodents and nonhuman primates after hydrodynamic limb vein delivery of naked plasmid DNA. Hum Gene Ther. 2011;22:889-903.
30. Fan Z, Kocis K, Valley R, et al. Safety and feasibility of high-pressure transvenous limb perfusion with 0.9% saline in human muscular dystrophy. Mol Ther. 2012;20:456-61.
31. Fan Z, Kocis K, Valley R, et al. High-pressure transvenous perfusion of the upper extremity in human muscular dystrophy: a safety study with 0.9% saline. Hum Gene Ther. 2015;26:614-21.
32. Braun S. Gene-based therapies of neuromuscular disorders: an update and the pivotal role of patient organizations in their discovery and implementation. J Gene Med. 2013;15:397-413.
33. Scherman D. Advanced textbook on gene transfer, gene therapy and genetic pharmacology: principles, delivery and pharmacological and biomedical applications of nucleotide-based therapie. 2th ed. Daniel Scherman: Imperial College Press. 2014 pp 17-29.
34. England SB, Nicholson LV, Johnson MA, et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature. 1990;343:180-2.
35. Fortunato F, Tonelli L, Farnè M, Selvatici R, Ferlini A. DMD deletions underlining mild dystrophinopathies: literature review highlights phenotype-related mutation clusters and provides insights about genetic mechanisms and prognosis. Front Neurol. 2023;14:1288721.
36. Duan D. Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol Ther. 2018;26:2337-56.
37. Morin A, Stantzou A, Petrova ON, et al. Dystrophin myonuclear domain restoration governs treatment efficacy in dystrophic muscle. Proc Natl Acad Sci U S A. 2023;120:e2206324120.
38. FDA expands approval of gene therapy for patients with Duchenne muscular dystrophy. Available from: https://www.fda.gov/news-events/press-announcements/fda-expands-approval-gene-therapy-patients-duchenne-muscular-dystrophy. [Last accessed on 24 Jan 2025].
39. Chamberlain JS, Robb M, Braun S, et al. Microdystrophin expression as a surrogate endpoint for Duchenne muscular dystrophy clinical trials. Hum Gene Ther. 2023;34:404-15.
40. Boehler JF, Brown KJ, Beatka M, et al. Clinical potential of microdystrophin as a surrogate endpoint. Neuromuscul Disord. 2023;33:40-9.
41. Shen W, Liu S, Ou L. rAAV immunogenicity, toxicity, and durability in 255 clinical trials: a meta-analysis. Front Immunol. 2022;13:1001263.
42. Kwon JB, Ettyreddy AR, Vankara A, et al. In vivo gene editing of muscle stem cells with adeno-associated viral vectors in a mouse model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev. 2020;19:320-9.
43. Vulin A, Barthélémy I, Goyenvalle A, et al. Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping. Mol Ther. 2012;20:2120-33.
44. Le Hir M, Goyenvalle A, Peccate C, et al. AAV genome loss from dystrophic mouse muscles during AAV-U7 snRNA-mediated exon-skipping therapy. Mol Ther. 2013;21:1551-8.
45. Dupont JB, Guo J, Renaud-Gabardos E, et al. AAV-mediated gene transfer restores a normal muscle transcriptome in a canine model of X-linked myotubular myopathy. Mol Ther. 2020;28:382-93.
46. Le Guiner C, Fraysse B, Testault I, et al. More than nine year survival of a GRMD dog after injection of AAV-microdystrophin gene therapy. Mol Ther. 2023;31:pp53.
47. Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21:704-12.
48. Verma S, Nwosu SN, Razdan R, et al. Seroprevalence of adeno-associated virus neutralizing antibodies in males with duchenne muscular dystrophy. Hum Gene Ther. 2023;34:430-8.
49. Zygmunt DA, Crowe KE, Flanigan KM, Martin PT. Comparison of serum rAAV serotype-specific antibodies in patients with Duchenne muscular dystrophy, Becker muscular dystrophy, inclusion body myositis, or GNE myopathy. Hum Gene Ther. 2017;28:737-46.
50. Yang TY, Braun M, Lembke W, et al. Immunogenicity assessment of AAV-based gene therapies: an IQ consortium industry white paper. Mol Ther Methods Clin Dev. 2022;26:471-94.
51. Gross DA, Tedesco N, Leborgne C, Ronzitti G. Overcoming the challenges imposed by humoral immunity to AAV vectors to achieve safe and efficient gene transfer in seropositive patients. Front Immunol. 2022;13:857276.
52. Leborgne C, Barbon E, Alexander JM, et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat Med. 2020;26:1096-101.
53. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122:23-36.
54. McDouall RM, Dunn MJ, Dubowitz V. Expression of class I and class II MHC antigens in neuromuscular diseases. J Neurol Sci. 1989;89:213-26.
55. Faust SM, Bell P, Cutler BJ, et al. CpG-depleted adeno-associated virus vectors evade immune detection. J Clin Invest. 2013;123:2994-3001.
56. VandenDriessche T, Chuah MK. Vector decoys trick the immune response. Sci Transl Med. 2013;5:194fs28.
57. Mendell JR, Sahenk Z, Lehman K. et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with Duchenne muscular dystrophy: a nonrandomized controlled trial. JAMA Neurol. 2020;77:1122-31.
58. Lek A, Atas E, Lin B, et al. Meeting report: 2023 nuscular dystrophy association summit on “safety and challenges in gene therapy of neuromuscular diseases”. J Neuromuscul Dis. 2024;11:1139-60.
59. Yue Y, Wasala NB, Bostick B, Duan D. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev. 2016;3:16045.
60. Hart CC, Lee YI, Xie J. et al. Potential limitations of microdystrophin gene therapy for Duchenne muscular dystrophy. JCI Insight. 2024;9:e165869.
61. Kodippili K, Hakim CH, Pan X, et al. Dual AAV gene therapy for Duchenne muscular dystrophy with a 7-kb mini-dystrophin gene in the canine model. Hum Gene Ther. 2018; 3:299-311.
62. Albini S, Palmieri L, Dubois A, Bourg N, Lostal W, Richard I. Assessment of therapeutic potential of a dual AAV approach for Duchenne muscular dystrophy. Int J Mol Sci. 2023;24:11421.
63. Zhou Y, Zhang C, Xiao W, Herzog RW, Han R. Systemic delivery of full-length dystrophin in Duchenne muscular dystrophy mice. Nature Com. 2024;15:6141.
64. Tinsley J. M., Davies K.E. Utrophin: a potential replacement for dystrophin? Neuromuscul Disord. 1993;3:537-9.
65. Szwec S, Kaplucha Z, Chamberlain JS, Konieczny P. Dystrophin- and utrophin-based therapeutic approaches for treatment of Duchenne muscular dystrophy: a comparative review. BioDrugs. 2024;38:95-119.
66. Xu R, Jia Y, Zygmunt DA, Martin PT. rAAVrh74.MCK.GALGT2 protects against loss of hemodynamic function in the aging mdx mouse heart. Mol Ther. 2019;27:636-49.
67. Martin PT, Zygmunt DA, Ashbrook A, et al. Short-term treatment of golden retriever muscular dystrophy (GRMD) dogs with rAAVrh74.MHCK7.GALGT2 induces muscle glycosylation and utrophin expression but has no significant effect on muscle strength. PLoS One. 2021;16:e0248721.
68. Flanigan KM, Vetter TA, Simmons TR, et al. A first-in-human phase I/IIa gene transfer clinical trial for Duchenne muscular dystrophy using rAAVrh74.MCK.GALGT2. Mol Ther Methods Clin Dev. 2022;27:47-60.
69. Notice regarding impairment loss for products under development. Available from: https://www.astellas.com/en/news/25731. [Last accessed on 24 Jan 2025].
70. Hordeaux J, Lamontagne RJ, Song C, et al. High-dose systemic adeno-associated virus vector administration causes liver and sinusoidal endothelial cell injury. Mol Ther. 2024;32:952-68.
71. Weinmann J, Weis S, Sippel J, et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat Commun. 2020;11:5432.
72. Hong AV, Seul L, Petat E, et al. An engineered AAV targeting integrin alpha V beta 6 presents improved myotropism across species. Nat Commun. 2024;15:7965.