REFERENCES

1. Miao L, Targher G, Byrne CD, Cao YY, Zheng MH. Current status and future trends of the global burden of MASLD. Trends Endocrinol Metab 2024;35:697-707.

2. Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO clinical practice guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol 2024;81:492-542.

3. Cooreman MP, Vonghia L, Francque SM. MASLD/MASH and type 2 diabetes: two sides of the same coin? From single PPAR to pan-PPAR agonists. Diabetes Res Clin Pract 2024;212:111688.

4. Lavrado NC, Salles GF, Cardoso CRL, et al. Impact of PNPLA3 and TM6SF2 polymorphisms on the prognosis of patients with MASLD and type 2 diabetes mellitus. Liver Int 2024;44:1042-50.

5. Israelsen M, Francque S, Tsochatzis EA, Krag A. Steatotic liver disease. Lancet 2024;404:1761-78.

6. Kozlitina J, Sookoian S. Global epidemiological impact of PNPLA3 I148M on liver disease. Liver Int 2024.

7. Xia M, Varmazyad M, Pla-Palacín I, et al. Comparison of wild-type and high-risk PNPLA3 variants in a human biomimetic liver microphysiology system for metabolic dysfunction-associated steatotic liver disease precision therapy. Front Cell Dev Biol 2024;12:1423936.

8. Baulande S, Lasnier F, Lucas M, Pairault J. Adiponutrin, a transmembrane protein corresponding to a novel dietary- and obesity-linked mRNA specifically expressed in the adipose lineage. J Biol Chem 2001;276:33336-44.

9. Monga SPS, Behari J. Chapter 20 - Molecular basis of liver disease. In: Essential concepts in molecular pathology. 2020; pp. 345-65.

10. Sherman DJ, Liu L, Mamrosh JL, et al. The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. Proc Natl Acad Sci USA 2024;121:e2318619121.

11. Lulić AM, Katalinić M. The PNPLA family of enzymes: characterisation and biological role. Arh Hig Rada Toksikol 2023;74:75-89.

12. Gou Y, Wang L, Zhao J, et al. PNPLA3-I148M variant promotes the progression of liver fibrosis by inducing mitochondrial dysfunction. Int J Mol Sci 2023;24:9681.

13. Caon E, Martins M, Hodgetts H, et al. Exploring the impact of the PNPLA3 I148M variant on primary human hepatic stellate cells using 3D extracellular matrix models. J Hepatol 2024;80:941-56.

14. Kabbani M, Michailidis E, Steensels S, et al. Human hepatocyte PNPLA3-148M exacerbates rapid non-alcoholic fatty liver disease development in chimeric mice. Cell Rep 2022;40:111321.

15. Li Y, van den Berg EH, Kurilshikov A, et al. Genome-wide studies reveal genetic risk factors for hepatic fat content. Genom Proteom Bioinf 2024;22:qzae031.

16. Liao S, An K, Liu Z, et al. Genetic variants associated with metabolic dysfunction-associated fatty liver disease in western China. J Clin Lab Anal 2022;36:e24626.

17. Lee Y, Cho EJ, Choe EK, et al. Genome-wide association study of metabolic dysfunction-associated fatty liver disease in a Korean population. Sci Rep 2024;14:9753.

18. Cherubini A, Ostadreza M, Jamialahmadi O, et al. Interaction between estrogen receptor-α and PNPLA3 p.I148M variant drives fatty liver disease susceptibility in women. Nat Med 2023;29:2643-55.

19. He S, McPhaul C, Li JZ, et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem 2010;285:6706-15.

20. Johnson SM, Bao H, McMahon CE, et al. PNPLA3 is a triglyceride lipase that mobilizes polyunsaturated fatty acids to facilitate hepatic secretion of large-sized very low-density lipoprotein. Nat Commun 2024;15:4847.

21. Agliarulo I, Parashuraman S. Golgi apparatus regulates plasma membrane composition and function. Cells 2022;11:368.

22. Witzel HR, Schwittai IMG, Hartmann N, et al. PNPLA3(I148M) inhibits lipolysis by perilipin-5-dependent competition with ATGL. Cells 2022;12:73.

23. Lee SO, Jin UH, Kang JH, et al. The orphan nuclear receptor NR4A1 (Nur77) regulates oxidative and endoplasmic reticulum stress in pancreatic cancer cells. Mol Cancer Res 2014;12:527-38.

24. Luukkonen PK, Porthan K, Ahlholm N, et al. The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans. Cell Metab 2023;35:1887-96.e5.

25. Bruschi FV, Claudel T, Tardelli M, et al. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 2017;65:1875-90.

26. Pingitore P, Dongiovanni P, Motta BM, et al. PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis. Hum Mol Genet 2016;25:5212-22.

27. Hemmann S, Graf J, Roderfeld M, Roeb E. Expression of MMPs and TIMPs in liver fibrosis - a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol 2007;46:955-75.

28. Thiele ND, Wirth JW, Steins D, et al. TIMP-1 is upregulated, but not essential in hepatic fibrogenesis and carcinogenesis in mice. Sci Rep 2017;7:714.

29. Rady B, Nishio T, Dhar D, et al. PNPLA3 downregulation exacerbates the fibrotic response in human hepatic stellate cells. PLoS One 2021;16:e0260721.

30. Kovarova M, Königsrainer I, Königsrainer A, et al. The genetic variant I148M in PNPLA3 is associated with increased hepatic retinyl-palmitate storage in humans. J Clin Endocrinol Metab 2015;100:E1568-74.

31. Chen G. The link between hepatic vitamin a metabolism and nonalcoholic fatty liver disease. Curr Drug Targets 2015;16:1281-92.

32. Chen G, Weiskirchen S, Weiskirchen R. Vitamin A: too good to be bad? Front Pharmacol 2023;14:1186336.

33. Pirazzi C, Valenti L, Motta BM, et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet 2014;23:4077-85.

34. Mondul A, Mancina RM, Merlo A, et al. PNPLA3 I148M variant influences circulating retinol in adults with nonalcoholic fatty liver disease or obesity. J Nutr 2015;145:1687-91.

35. Bonacini M, Kassamali F, Kari S, Lopez Barrera N, Kohla M. Racial differences in prevalence and severity of non-alcoholic fatty liver disease. World J Hepatol 2021;13:763-73.

36. Caldwell SH, Harris DM, Patrie JT, Hespenheide EE. Is NASH underdiagnosed among African Americans? Am J Gastroenterol 2002;97:1496-500.

37. Lazo M, Xie J, Alvarez CS, et al. Frequency of the PNPLA3 rs738409 polymorphism and other genetic loci for liver disease in a Guatemalan adult population. Liver Int 2022;42:1470-4.

38. Zhang H, Zhou XD, Shapiro MD, et al. Global burden of metabolic diseases, 1990-2021. Metabolism 2024;160:155999.

39. Kallwitz ER, Tayo BO, Kuniholm MH, et al. American ancestry is a risk factor for suspected nonalcoholic fatty liver disease in Hispanic/Latino adults. Clin Gastroenterol Hepatol 2019;17:2301-9.

40. Shen JH, Li YL, Li D, Wang NN, Jing L, Huang YH. The rs738409 (I148M) variant of the PNPLA3 gene and cirrhosis: a meta-analysis. J Lipid Res 2015;56:167-75.

41. Grimaudo S, Pipitone RM, Pennisi G, et al. Association between PNPLA3 rs738409 C>G variant and liver-related outcomes in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2020;18:935-44.e3.

42. Huang Z, Guo X, Zhang G, Liang L, Nong B. Correlation between PNPLA3 rs738409 polymorphism and hepatocellular carcinoma: a meta-analysis of 10,330 subjects. Int J Biol Markers 2019;34:117-22.

43. Gusdon AM, Hui Y, Chen J, Mathews CE, Qu S. Mitochondrial haplogroup G is associated with nonalcoholic fatty liver disease, while haplogroup A mitigates the effects of PNPLA3. Endocrinol Diabetes Metab 2021;4:e00187.

44. Lang S, Martin A, Zhang X, et al. Combined analysis of gut microbiota, diet and PNPLA3 polymorphism in biopsy-proven non-alcoholic fatty liver disease. Liver Int 2021;41:1576-91.

45. Krawczyk M, Grünhage F, Zimmer V, Lammert F. Variant adiponutrin (PNPLA3) represents a common fibrosis risk gene: non-invasive elastography-based study in chronic liver disease. J Hepatol 2011;55:299-306.

46. Wang P, Wu C, Li Y, Gong Y, Shen N. PNPLA3 rs738409 is not associated with the risk of hepatocellular carcinoma and persistent infection of hepatitis B virus (HBV) in HBV-related subjects: a case-control study and meta-analysis on Asians. Gene 2020;742:144585.

47. Yi S, Ren G, Zhu Y, Cong Q. Correlation analysis of hepatic steatosis and hepatitis B virus: a cross-sectional study. Virol J 2024;21:22.

48. Lisboa QC, Nardelli MJ, Pereira PA, et al. PNPLA3 and TM6SF2 polymorphisms in Brazilian patients with nonalcoholic fatty liver disease. World J Hepatol 2020;12:792-806.

49. Idilman R, Karatayli SC, Kabacam G, Savas B, Elhan AH, Bozdayi AM. The role of PNPLA3 (rs738409) c>g variant on histological progression of non-alcoholic fatty liver disease. Hepatol Forum 2020;1:82-7.

50. Pennisi G, Pipitone RM, Cammà C, et al. PNPLA3 rs738409 C>G variant predicts fibrosis progression by noninvasive tools in nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2021;19:1979-81.

51. Salari N, Darvishi N, Mansouri K, et al. Association between PNPLA3 rs738409 polymorphism and nonalcoholic fatty liver disease: a systematic review and meta-analysis. BMC Endocr Disord 2021;21:125.

52. Li G, Tang LJ, Zhu PW, et al. PNPLA3 rs738409 C>G variant influences the association between visceral fat and significant fibrosis in biopsy-proven nonalcoholic fatty liver disease. J Clin Transl Hepatol 2022;10:439-48.

53. Kim HS, Xiao X, Byun J, et al. Synergistic associations of PNPLA3 I148M Variant, alcohol intake, and obesity with risk of cirrhosis, hepatocellular carcinoma, and mortality. JAMA Netw Open 2022;5:e2234221.

54. Chen VL, Oliveri A, Miller MJ, et al. PNPLA3 genotype and diabetes identify patients with nonalcoholic fatty liver disease at high risk of incident cirrhosis. Gastroenterology 2023;164:966-77.e17.

55. Koo BK, Lee H, Kwak SH, Lee DH, Park JH, Kim W. Innovative Target Exploration of NAFLD (ITEN) consortium. Long-term effect of PNPLA3 on the aggravation of nonalcoholic fatty liver disease in a biopsy-proven cohort. Clin Gastroenterol Hepatol 2023;21:1105-7.e3.

56. Zhao Y, Zhao W, Ma J, Toshiyoshi M, Zhao Y. Patatin-like phospholipase domain-containing 3 gene (PNPLA3) polymorphic (rs738409) single nucleotide polymorphisms and susceptibility to nonalcoholic fatty liver disease: a meta-analysis of twenty studies. Medicine 2023;102:e33110.

57. Rosso C, Caviglia GP, Birolo G, et al. Impact of PNPLA3 rs738409 polymorphism on the development of liver-related events in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2023;21:3314-21.e3.

58. Seko Y, Yamaguchi K, Shima T, et al. The greater impact of PNPLA3 polymorphism on liver-related events in Japanese non-alcoholic fatty liver disease patients: a multicentre cohort study. Liver Int 2023;43:2210-9.

59. Chalasani N, Vilar-Gomez E, Loomba R, et al. PNPLA3 rs738409, age, diabetes, sex, and advanced fibrosis jointly contribute to the risk of major adverse liver outcomes in metabolic dysfunction-associated steatotic liver disease. Hepatology 2024;80:1212-26.

60. Bril F, Kalavalapalli S, Lomonaco R, Frye R, Godinez Leiva E, Cusi K. Insulin resistance is an integral feature of MASLD even in the presence of PNPLA3 variants. JHEP Rep 2024;6:101092.

61. Elmansoury N, Megahed AA, Kamal A, et al. Relevance of PNPLA3, TM6SF2, HSD17B13, and GCKR variants to MASLD severity in an Egyptian population. Genes 2024;15:455.

62. Kocas-Kilicarslan ZN, Cetin Z, Faccioli LAP, et al. Polymorphisms associated with metabolic dysfunction-associated steatotic liver disease influence the progression of end-stage liver disease. Gastro Hep Adv 2024;3:67-77.

63. Seko Y, Yamaguchi K, Shima T, et al. Differential effects of genetic polymorphism on comorbid disease in metabolic dysfunction-associated steatotic liver disease. Clin Gastroenterol Hepatol 2024;22:1436-43.e4.

64. Pelusi S, Ronzoni L, Rondena J, et al. Prevalence and determinants of liver disease in relatives of Italian patients with advanced MASLD. Clin Gastroenterol Hepatol 2024;22:2231-9.e4.

65. Suresh D, Li A, Miller MJ, Wijarnpreecha K, Chen VL. Associations between metabolic hyperferritinaemia, fibrosis-promoting alleles and clinical outcomes in steatotic liver disease. Liver Int 2024;44:389-98.

66. Lonardo A, Lombardini S, Scaglioni F, et al. Hepatic steatosis and insulin resistance: does etiology make a difference? J Hepatol 2006;44:190-6.

67. Vesković M, Šutulović N, Hrnčić D, Stanojlović O, Macut D, Mladenović D. The interconnection between hepatic insulin resistance and metabolic dysfunction-associated steatotic liver disease-the transition from an adipocentric to liver-centric approach. Curr Issues Mol Biol 2023;45:9084-102.

68. Semmler G, Balcar L, Oberkofler H, et al. PNPLA3 and SERPINA1 variants are associated with severity of fatty liver disease at first referral to a tertiary center. J Pers Med 2021;11:165.

69. Jansson-Knodell CL, Gawrieh S, McIntyre AD, Liang T, Hegele RA, Chalasani N. Apolipoprotein B and PNPLA3 double heterozygosity in a father-son pair with advanced nonalcoholic fatty liver disease. Hepatology 2020;71:383-5.

70. Chouik Y, Di Filippo M, Radenne S, Dumortier J, Moulin P, Levrero M. Combination of heterozygous APOB gene mutation with PNPLA3 and TM6SF2 variants promotes steatotic liver disease, cirrhosis and HCC development. Liver Int 2024;44:1474-7.

71. Volkert I, Fromme M, Schneider C, et al. Impact of PNPLA3 I148M on alpha-1 antitrypsin deficiency-dependent liver disease progression. Hepatology 2024;79:898-911.

72. Bellan M, Colletta C, Barbaglia MN, et al. Severity of nonalcoholic fatty liver disease in type 2 diabetes mellitus: relationship between nongenetic factors and PNPLA3/HSD17B13 polymorphisms. Diabetes Metab J 2019;43:700-10.

73. Seko Y, Yamaguchi K, Tochiki N, et al. Attenuated effect of PNPLA3 on hepatic fibrosis by HSD17B13 in Japanese patients with non-alcoholic fatty liver disease. Liver Int 2020;40:1686-92.

74. Mantovani A, Gisondi P, Lonardo A, Targher G. Relationship between non-alcoholic fatty liver disease and psoriasis: a novel hepato-dermal axis? Int J Mol Sci 2016;17:217.

75. Karamfilova V, Gateva A, Assyov Y, et al. PNPLA3 I148M polymorphism in patients with nonalcoholic fatty liver disease, obesity and prediabetes. J Gastrointestin Liver Dis 2019;28:433-8.

76. Wu JT, Liu SS, Xie XJ, Liu Q, Xin YN, Xuan SY. Independent and joint correlation of PNPLA3 I148M and TM6SF2 E167K variants with the risk of coronary heart disease in patients with non-alcoholic fatty liver disease. Lipids Health Dis 2020;19:29.

77. Ajmera V, Liu A, Bettencourt R, Dhar D, Richards L, Loomba R. The impact of genetic risk on liver fibrosis in non-alcoholic fatty liver disease as assessed by magnetic resonance elastography. Aliment Pharmacol Ther 2021;54:68-77.

78. Moon S, Chung GE, Joo SK, et al. A PNPLA3 polymorphism confers lower susceptibility to incident diabetes mellitus in subjects with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2022;20:682-91.e8.

79. Mantovani A, Pelusi S, Margarita S, et al. Adverse effect of PNPLA3 p.I148M genetic variant on kidney function in middle-aged individuals with metabolic dysfunction. Aliment Pharmacol Ther 2023;57:1093-102.

80. Mantovani A, Zusi C, Csermely A, et al. Association between PNPLA3 rs738409 variant and 5-year estimated glomerular filtration rate decline in post-menopausal women with type 2 diabetes: a panel-data analysis. Nutr Metab Cardiovasc Dis 2023;33:1093-7.

81. Tai J, Hsu CW, Chen WT, et al. Association of liver fibrosis with extrahepatic cancer in steatotic liver disease patients with PNPLA3 I148M GG genotype. Cancer Sci 2024;115:564-74.

82. Agoglia L, Cardoso AC, Barbosa L, et al. Psoriasis and steatotic liver disease: are PNPLA3 and TM6SF2 polymorphisms suitable for the hepato-dermal axis hypothesis? Ann Hepatol 2024;29:101477.

83. Mantovani A, Targher G. PNPLA3 rs738409 polymorphism and kidney dysfunction: an association beyond nonalcoholic fatty liver disease? Metab Target Organ Damage 2023;3:18.

84. Demirtas CO, Yilmaz Y. Decoding 17-beta-hydroxysteroid dehydrogenase 13: a multifaceted perspective on its role in hepatic steatosis and associated disorders. J Clin Transl Hepatol 2024;12:857-64.

85. Huang HYR, Vitali C, Zhang D, et al. Deep metabolic phenotyping of humans with protein-altering variants in TM6SF2 using a genome-first approach. JHEP Rep 2025;7:101243.

86. Mahdessian H, Taxiarchis A, Popov S, et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci USA 2014;111:8913-8.

87. Smagris E, Gilyard S, BasuRay S, Cohen JC, Hobbs HH. Inactivation of Tm6sf2, a gene defective in fatty liver disease, impairs lipidation but not secretion of very low density lipoproteins. J Biol Chem 2016;291:10659-76.

88. Sliz E, Sebert S, Würtz P, et al. NAFLD risk alleles in PNPLA3, TM6SF2, GCKR and LYPLAL1 show divergent metabolic effects. Hum Mol Genet 2018;27:2214-23.

89. Chandrasekaran P, Weiskirchen R. The pivotal role of the membrane-bound O-acyltransferase domain containing 7 in non-alcoholic fatty liver disease. Livers 2024;4:1-14.

90. Li YM, Xiao X, Wang J, et al. Genetic variations and nonalcoholic fatty liver disease: field synopsis, systematic meta-analysis, and epidemiological evidence. Biomed Environ Sci 2024;37:762-73.

91. Ajmera V, Loomba R. Advances in the genetics of nonalcoholic fatty liver disease. Curr Opin Gastroenterol 2023;39:150-5.

92. Bridi L, Agrawal S, Tesfai K, et al. The impact of genetic risk on the prevalence of advanced fibrosis and cirrhosis in prospectively assessed patients with type 2 diabetes. Aliment Pharmacol Ther 2024;60:369-77.

93. Yuan C, Lu L, An B, et al. Association between LYPLAL1 rs12137855 polymorphism with ultrasound-defined non-alcoholic fatty liver disease in a Chinese Han population. Hepat Mon 2015;15:e33155.

94. Danpanichkul P, Suparan K, Prasitsumrit V, Ahmed A, Wijarnpreecha K, Kim D. Long-term outcomes and risk modifiers of MASLD between lean and non-lean populations. Clin Mol Hepatol 2024.

95. Sato S, Iino C, Sasada T, et al. Epidemiological study on the interaction between the PNPLA3 (rs738409) and gut microbiota in metabolic dysfunction-associated steatotic liver disease. Genes 2024;15:1172.

96. Navarro J. HIV and liver disease. AIDS Rev 2022;25:87-96.

97. Choochuay K, Kunhapan P, Puangpetch A, et al. Associations of PNPLA3 and LEP genetic polymorphisms with metabolic-associated fatty liver disease in Thai people living with human immunodeficiency virus. World J Hepatol 2024;16:366-78.

98. van Eekeren LE, Vadaq N, Vos WAJW, et al. Liver steatosis is prevalent in lean people with HIV and associated with exposure to antiretroviral treatment-a cross-sectional study. Open Forum Infect Dis 2024;11:ofae266.

99. Guaraldi G, Lonardo A, Ballestri S, et al. Human immunodeficiency virus is the major determinant of steatosis and hepatitis C virus of insulin resistance in virus-associated fatty liver disease. Arch Med Res 2011;42:690-7.

100. Han WM, Apornpong T, Chuaypen N, Tangkijvanich P, Avihingsanon A. HIV-NAT 006 team. Association of PNPLA3 risk variant with steatotic liver disease among lean people with HIV mono-infection. J Hepatol 2024:S0168-8278(24)02495-4.

101. Sherman KE, Rouster SD, Meeds H, et al. PNPLA3 single nucleotide polymorphism prevalence and association with liver disease in a diverse cohort of persons living with HIV. Biology 2021;10:242.

102. Paklar N, Mijic M, Filipec-Kanizaj T. The outcomes of liver transplantation in severe metabolic dysfunction-associated steatotic liver disease patients. Biomedicines 2023;11:3096.

103. Lonardo A, Mantovani A, Petta S, Carraro A, Byrne CD, Targher G. Metabolic mechanisms for and treatment of NAFLD or NASH occurring after liver transplantation. Nat Rev Endocrinol 2022;18:638-50.

104. Makino K, Ishii T, Ogiso S, et al. Combination of risk alleles of PNPLA3, TM6SF2, and HSD17B13 of donors can predict recurrence of steatotic liver disease after liver transplantation. Hepatol Res 2024;54:1148-57.

105. Yoo T, Lee KW, Yi NJ, et al. Impact of PNPLA3 (rs738409-G) polymorphism on post-transplant outcomes after liver transplantation for alcohol-related liver disease. Clin Transplant 2020;34:e14011.

106. Tang S, Zhang J, Mei TT, et al. Association of PNPLA3 rs738409 G/C gene polymorphism with nonalcoholic fatty liver disease in children: a meta-analysis. BMC Med Genet 2020;21:163.

107. Li J, Hua W, Ji C, et al. Effect of the patatin-like phospholipase domain containing 3 gene (PNPLA3) I148M polymorphism on the risk and severity of nonalcoholic fatty liver disease and metabolic syndromes: a meta-analysis of paediatric and adolescent individuals. Pediatr Obes 2020;15:e12615.

108. Mansoor S, Maheshwari A, Di Guglielmo M, et al. The PNPLA3 rs738409 variant but not MBOAT7 rs641738 is a risk factor for nonalcoholic fatty liver disease in obese U.S. children of hispanic ethnicity. Pediatr Gastroenterol Hepatol Nutr 2021;24:455-69.

109. Schenker RB, Machle CJ, Schmidt KA, Allayee H, Kohli R, Goran MI. Associations of dietary sugars with liver stiffness in Latino adolescents with obesity differ on PNPLA3 and liver disease severity. Liver Int 2024;44:1768-74.

110. Lee KJ, Moon JS, Kim NY, Ko JS. Effects of PNPLA3, TM6SF2 and SAMM50 on the development and severity of non-alcoholic fatty liver disease in children. Pediatr Obes 2022;17:e12852.

111. Marzuillo P, Di Sessa A, Guarino S, et al. Nonalcoholic fatty liver disease and eGFR levels could be linked by the PNPLA3 I148M polymorphism in children with obesity. Pediatr Obes 2019;14:e12539.

112. Huang JF, Chuang WL. Editorial: PNPLA3 genotype and liver diseases-more than non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2020;52:390-1.

113. Azariadis K, Gatselis NK, Lyberopoulou A, et al. PNPLA3 I148 M genetic variant in autoimmune hepatitis characterises advanced disease at diagnosis and reduced survival free of cirrhotic events and liver-related mortality. J Transl Autoimmun 2024;9:100243.

114. Mederacke YS, Mederacke I. Editorial: PNPLA3 genotype and liver diseases-more than non-alcoholic fatty liver disease. Authors’ reply. Aliment Pharmacol Ther 2020;52:391-2.

115. Chen VL, Vespasiani-Gentilucci U. Integrating PNPLA3 into clinical risk prediction. Liver Int 2024.

116. Salameh H, Raff E, Erwin A, et al. PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. Am J Gastroenterol 2015;110:846-56.

117. Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023;78:1966-86.

118. Liu WY, Zheng KI, Pan XY, et al. Effect of PNPLA3 polymorphism on diagnostic performance of various noninvasive markers for diagnosing and staging nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2020;35:1057-64.

119. Rashu EB, Werge MP, Hetland LE, et al. Use of PNPLA3, TM6SF2, and HSD17B13 for detection of fibrosis in MASLD in the general population. Clin Res Hepatol Gastroenterol 2024;48:102389.

120. Cherubini A, Rosso C, Della Torre S. Sex-specific effects of PNPLA3 I148M. Liver Int 2024.

121. Olloquequi J, Castro-Santos P, Díaz-Peña R. Pharmacogenetic variation and its clinical relevance in a Latin American rural population. Int J Mol Sci 2022;23:11758.

122. Yuan L, Terrrault NA. PNPLA3 and nonalcoholic fatty liver disease: towards personalized medicine for fatty liver. Hepatobiliary Surg Nutr 2020;9:353-6.

123. Dong XC. PNPLA3-A potential therapeutic target for personalized treatment of chronic liver disease. Front Med 2019;6:304.

124. Muto N, Oniki K, Kudo M, et al. A pilot study assessing the possible combined effect of physical activity and PNPLA3 rs738409 polymorphism on the risk for non-alcoholic fatty liver disease in the Japanese elderly general population. Diabetes Metab Syndr Obes 2020;13:333-41.

125. Paolini E, Longo M, Meroni M, et al. The I148M PNPLA3 variant mitigates niacin beneficial effects: how the genetic screening in non-alcoholic fatty liver disease patients gains value. Front Nutr 2023;10:1101341.

126. Murray JK, Long J, Liu L, et al. Identification and optimization of a minor allele-specific siRNA to prevent PNPLA3 I148M-driven nonalcoholic fatty liver disease. Nucleic Acid Ther 2021;31:324-40.

127. Zhang G, Jiang W, He F, et al. LDL-C and TC mediate the risk of PNPLA3 inhibition in cardiovascular diseases. J Clin Endocrinol Metab 2024:dgae264.

128. Wang Y, Hong S, Hudson H, et al. PNPLA3(148M) is a gain-of-function mutation that promotes hepatic steatosis by inhibiting ATGL-mediated triglyceride hydrolysis. J Hepatol 2024:S0168-8278(24)02707.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/