REFERENCES
1. Key Statistics for prostate cancer. 2017; Available from: https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html [Last accessed on 28 Oct 2024].
3. Lowder D, Rizwan K, McColl C, et al. Racial disparities in prostate cancer: a complex interplay between socioeconomic inequities and genomics. Cancer Lett 2022;531:71-82.
4. Multigner L, Ndong JR, Oliva A, Blanchet P. Polluants environnementaux et cancer de la prostate: données épidémiologiques [Environmental pollutants and prostate cancer: epidemiological data]. Gynecol Obstet Fertil 2008;36:848-56.
5. Di Virgilio F. New pathways for reactive oxygen species generation in inflammation and potential novel pharmacological targets. Curr Pharm Des 2004;10:1647-52.
9. Glover M, Soni S, Ren Q, Maclennan GT, Fu P, Gupta S. Influence of chronic inflammation on Bcl-2 and PCNA expression in prostate needle biopsy specimens. Oncol Lett 2017;14:3927-34.
10. Stark T, Livas L, Kyprianou N. Inflammation in prostate cancer progression and therapeutic targeting. Transl Androl Urol 2015;4:455-63.
11. Sfanos KS, De Marzo AM. Prostate cancer and inflammation: the evidence. Histopathology 2012;60:199-215.
12. Bäckdahl L, Bushell A, Beck S, et al. Inflammatory signalling as mediator of epigenetic modulation in tissue-specific chronic inflammation. Int J Biochem Cell Biol 2009;41:176-84.
13. MacLennan GT, Eisenberg R, Fleshman RL, et al. The influence of chronic inflammation in prostatic carcinogenesis: a 5-year followup study. J Urol 2006;176:1012-6.
14. Putzi MJ, De Marzo AM. Morphologic transitions between proliferative inflammatory atrophy and high-grade prostatic intraepithelial neoplasia. Urology 2000;56:828-32.
15. Kryvenko ON, Jankowski M, Chitale DA, et al. Inflammation and preneoplastic lesions in benign prostate as risk factors for prostate cancer. Mod Pathol 2012;25:1023-32.
16. Porter CM, Shrestha E, Peiffer LB, Sfanos KS. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis 2018;21:345-54.
17. Bozeman CB, Carver BS, Eastham JA, Venable DD. Treatment of chronic prostatitis lowers serum prostate specific antigen. J Urol 2002;167:1723-6.
18. De Marzo AM, Marchi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 1999;155:1985-92.
19. Koochekpour S. Genetic and epigenetic changes in human prostate cancer. Iran Red Crescent Med J 2011;13:80-98.
20. Kohnen PW, Drach GW. Patterns of inflammation in prostatic hyperplasia: a histologic and bacteriologic study. J Urol 1979;121:755-60.
21. Woenckhaus J, Fenic I. Proliferative inflammatory atrophy: a background lesion of prostate cancer? Andrologia 2008;40:134-7.
22. Reznik G, Hamlin MH 2nd, Ward JM, Stinson SF. Prostatic hyperplasia and neoplasia in aging F344 rats. Prostate 1981;2:261-8.
23. Nakayama M, Gonzalgo ML, Yegnasubramanian S, Lin X, De Marzo AM, Nelson WG. GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cell Biochem 2004;91:540-52.
24. Palapattu GS, Sutcliffe S, Bastian PJ, et al. Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis 2005;26:1170-81.
25. Nakayama M, Bennett CJ, Hicks JL, et al. Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol 2003;163:923-33.
26. Chen W, Jia L, Gupta S, Maclennan GT. The role of chronic inflammation in prostate carcinogenesis: a follow-up study. Ann Urol Oncol 2019;2:1-8.
27. Enger SM, Van den Eeden SK, Sternfeld B, et al. California men’s health study (CMHS): a multiethnic cohort in a managed care setting. BMC Public Health 2006;6:172.
28. Tewari A, Horninger W, Pelzer AE, et al. Factors contributing to the racial differences in prostate cancer mortality. BJU Int 2005;96:1247-52.
29. Mahal BA, Alshalalfa M, Kensler KH, et al. Racial differences in genomic profiling of prostate cancer. N Engl J Med 2020;383:1083-5.
30. Li D, Zhan Y, Wang N, et al. ETV4 mediates dosage-dependent prostate tumor initiation and cooperates with p53 loss to generate prostate cancer. Sci Adv 2023;9:eadc9446.
33. Leitzmann MF, Rohrmann S. Risk factors for the onset of prostatic cancer: age, location, and behavioral correlates. Clin Epidemiol 2012;4:1-11.
34. Hino O, Kobayashi T. Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex. Cancer Sci 2017;108:5-11.
35. Causes of Neoplasia. Available from: http://library.med.utah.edu/WebPath/NEOHTML/NEOPL104.html [Last accessed on 28 Oct 2024].
36. De Nunzio C, Kramer G, Marberger M, et al. The controversial relationship between benign prostatic hyperplasia and prostate cancer: the role of inflammation. Eur Urol 2011;60:106-17.
38. Cavanagh H, Rogers KM. The role of BRCA1 and BRCA2 mutations in prostate, pancreatic and stomach cancers. Hered Cancer Clin Pract 2015;13:16.
39. Alanee SR, Glogowski EA, Schrader KA, Eastham JA, Offit K. Clinical features and management of BRCA1 and BRCA2-associated prostate cancer. Front Biosci 2014;6:15-30.
40. Narod SA, Neuhausen S, Vichodez G, et al. Hereditary Breast Cancer Study Group. Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer 2008;99:371-4.
41. Molinié V, Hervé JM, Lugagne PM, Lebret T, Botto H. Diagnostic utility of a p63/alpha-methyl coenzyme A racemase (p504s) cocktail in ambiguous lesions of the prostate upon needle biopsy. BJU Int 2006;97:1109-15.
42. Yang A, McKeon F. P63 and P73: P53 mimics, menaces and more. Nat Rev Mol Cell Biol 2000;1:199-207.
43. Signoretti S, Waltregny D, Dilks J, et al. p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 2000;157:1769-75.
44. Crundwell MC, Chughtai S, Knowles M, et al. Allelic loss on chromosomes 8p, 22q and 18q (DCC) in human prostate cancer. Int J Cancer 1996;69:295-300.
45. Boran C, Kandirali E, Yilmaz F, Serin E, Akyol M. Reliability of the 34βE12, keratin 5/6, p63, bcl-2, and AMACR in the diagnosis of prostate carcinoma. Urol Oncol 2011;29:614-23.
46. Man YG, Gardner WA. Bad seeds produce bad crops: a single stage-process of prostate tumor invasion. Int J Biol Sci 2008;4:246-58.
47. Karaivanov M, Todorova K, Kuzmanov A, Hayrabedyan S. Quantitative immunohistochemical detection of the molecular expression patterns in proliferative inflammatory atrophy. J Mol Histol 2007;38:1-11.
48. Baltaci S, Orhan D, Gögüs C, Türkölmez K, Tulunay O, Gögüs O. Inducible nitric oxide synthase expression in benign prostatic hyperplasia, low- and high-grade prostatic intraepithelial neoplasia and prostatic carcinoma. BJU Int 2001;88:100-3.
49. Aaltoma SH, Lipponen PK, Kosma VM. Inducible nitric oxide synthase (iNOS) expression and its prognostic value in prostate cancer. Anticancer Res 2001;21:3101-6.
50. Klotz T, Bloch W, Volberg C, Engelmann U, Addicks K. Selective expression of inducible nitric oxide synthase in human prostate carcinoma. Cancer 1998;82:897-903.
51. Zha S, Gage WR, Sauvageot J, et al. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res 2001;61:8617-23.
52. De Marzo AM, Platz EA, Sutcliffe S, et al. Inflammation in prostate carcinogenesis. Nat Rev Cancer 2007;7:256-69.
53. Nelson WG, De Marzo AM, Deweese TL, et al. Preneoplastic prostate lesions: an opportunity for prostate cancer prevention. Ann N Y Acad Sci 2001;952:135-44.
54. Yegnasubramanian S. Prostate cancer epigenetics and its clinical implications. Asian J Androl 2016;18:549-58.
55. Lynch BM, Friedenreich CM, Kopciuk KA, Hollenbeck AR, Moore SC, Matthews CE. Sedentary behavior and prostate cancer risk in the NIH-AARP Diet and Health Study. Cancer Epidemiol Biomarkers Prev 2014;23:882-9.
56. Orsini N, Bellocco R, Bottai M, et al. A prospective study of lifetime physical activity and prostate cancer incidence and mortality. Br J Cancer 2009;101:1932-8.
57. Shephard RJ. Physical activity and prostate cancer: an updated review. Sports Med 2017;47:1055-73.
58. Jurdana M. Physical activity and cancer risk. Actual knowledge and possible biological mechanisms. Radiol Oncol 2021;55:7-17.
59. Gathirua-Mwangi WG, Zhang J. Dietary factors and risk for advanced prostate cancer. Eur J Cancer Prev 2014;23:96-109.
60. Rogers LJ, Basnakian AG, Orloff MS, et al. 2-amino-1-methyl-6-phenylimidazo(4,5-b) pyridine (PhIP) induces gene expression changes in JAK/STAT and MAPK pathways related to inflammation, diabetes and cancer. Nutr Metab 2016;13:54.
61. Matsushita M, Fujita K, Hayashi T, et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling. Cancer Res 2021;81:4014-26.
62. Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023;20:579-96.
63. Yu I, Wu R, Tokumaru Y, Terracina KP, Takabe K. The role of the microbiome on the pathogenesis and treatment of colorectal cancer. Cancers 2022;14:5685.
64. Kustrimovic N, Bombelli R, Baci D, Mortara L. Microbiome and prostate cancer: a novel target for prevention and treatment. Int J Mol Sci 2023;24:1511.
65. Miyabayashi K, Ijichi H, Fujishiro M. The role of the microbiome in pancreatic cancer. Cancers 2022;14:4479.
66. Mjaess G, Karam A, Roumeguère T, et al. Urinary microbiota and prostatic diseases: the key for the lock? Prostate Cancer Prostatic Dis 2023;26:451-60.
67. Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol 2018;15:11-24.
68. Liu Y, Baba Y, Ishimoto T, et al. Fusobacterium nucleatum confers chemoresistance by modulating autophagy in oesophageal squamous cell carcinoma. Br J Cancer 2021;124:963-74.
69. Alluri LSC, Paes Batista da Silva A, Verma S, et al. Presence of specific periodontal pathogens in prostate gland diagnosed with chronic inflammation and adenocarcinoma. Cureus 2021;13:e17742.
70. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 2020;19:1997-2007.
71. Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 2019;18:26.
72. Liu Y, Zhou Q, Ye F, Yang C, Jiang H. Gut microbiota-derived short-chain fatty acids promote prostate cancer progression via inducing cancer cell autophagy and M2 macrophage polarization. Neoplasia 2023;43:100928.
73. Martin-Gallausiaux C, Malabirade A, Habier J, Wilmes P. Fusobacterium nucleatum extracellular vesicles modulate gut epithelial cell innate immunity via FomA and TLR2. Front Immunol 2020;11:583644.
74. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017;2:17023.
75. Rubinstein MR, Baik JE, Lagana SM, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep 2019;20:e47638.
76. Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of MicroRNA-21. Gastroenterology 2017;152:851-66.e24.
77. Yu YN, Yu TC, Zhao HJ, et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget 2015;6:32013-26.
78. Jenike AE, Halushka MK. miR-21: a non-specific biomarker of all maladies. Biomark Res 2021;9:18.
79. Chen T, Li Q, Wu J, et al. Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism. Cancer Immunol Immunother 2018;67:1635-46.
80. Duan H, Wang L, Huangfu M, Li H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: mechanisms and therapeutic potentials. Biomed Pharmacother 2023;165:115276.
81. Chen S, Su T, Zhang Y, et al. Fusobacterium nucleatum promotes colorectal cancer metastasis by modulating KRT7-AS/KRT7. Gut Microbes 2020;11:511-25.
82. Yu T, Ji L, Lou L, et al. Fusobacterium nucleatum affects cell apoptosis by regulating intestinal flora and metabolites to promote the development of colorectal cancer. Front Microbiol 2022;13:841157.
83. Wang S, Liu Y, Li J, et al. Fusobacterium nucleatum Acts as a pro-carcinogenic bacterium in colorectal cancer: from association to causality. Front Cell Dev Biol 2021;9:710165.
84. Dadgar-Zankbar L, Shariati A, Bostanghadiri N, et al. Evaluation of enterotoxigenic Bacteroides fragilis correlation with the expression of cellular signaling pathway genes in Iranian patients with colorectal cancer. Infect Agent Cancer 2023;18:48.
85. Fernandes A, Oliveira A, Guedes C, Fernandes R, Soares R, Barata P. Effect of radium-223 on the gut microbiota of prostate cancer patients: a pilot case series study. Curr Issues Mol Biol 2022;44:4950-9.
86. Vigneswaran HT, Jagai JS, Greenwald DT, et al. Association between environmental quality and prostate cancer stage at diagnosis. Prostate Cancer Prostatic Dis 2021;24:1129-36.
87. Multigner L, Ndong JR, Giusti A, et al. Chlordecone exposure and risk of prostate cancer. J Clin Oncol 2010;28:3457-62.
88. Donat-Vargas C, Kogevinas M, Castaño-Vinyals G, et al. Long-term exposure to nitrate and trihalomethanes in drinking water and prostate cancer: a multicase-control study in Spain (MCC-Spain). Environ Health Perspect 2023;131:37004.
89. Youogo LMK, Parent ME, Hystad P, Villeneuve PJ. Ambient air pollution and prostate cancer risk in a population-based Canadian case-control study. Environ Epidemiol 2022;6:e219.
90. Salamanca-Fernández E, Rodríguez-Barranco M, Amiano P, et al. Bisphenol-A exposure and risk of breast and prostate cancer in the Spanish European prospective investigation into cancer and nutrition study. Environ Health 2021;20:88.