REFERENCES
1. Vardarli I, Rischpler C, Herrmann K, Weidemann F. Diagnosis and screening of patients with Fabry disease. Ther Clin Risk Manag 2020;16:551-8.
2. Linhart A, Germain DP, Olivotto I, et al. An expert consensus document on the management of cardiovascular manifestations of Fabry disease. Eur J Heart Fail 2020;22:1076-96.
3. Battaglia Y, Fiorini F, Azzini C, et al. Deficiency in the screening process of Fabry disease: analysis of chronic kidney patients not on dialysis. Front Med 2021;8:640876.
4. Germain DP, Altarescu G, Barriales-Villa R, et al. An expert consensus on practical clinical recommendations and guidance for patients with classic Fabry disease. Mol Genet Metab 2022;137:49-61.
5. Germain DP, Fan JQ. Pharmacological chaperone therapy by active-site-specific chaperones in Fabry disease: in vitro and preclinical studies. Int J Clin Pharmacol Ther 2009;47 (Suppl 1):S111-7.
6. Najafian B, Svarstad E, Bostad L, et al. Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney Int 2011;79:663-70.
7. Tøndel C, Bostad L, Hirth A, Svarstad E. Renal biopsy findings in children and adolescents with Fabry disease and minimal albuminuria. Am J Kidney Dis 2008;51:767-76.
8. Kurdi H, Lavalle L, Moon JCC, Hughes D. Inflammation in Fabry disease: stages, molecular pathways, and therapeutic implications. Front Cardiovasc Med 2024;11:1420067.
9. Mehta A, Clarke JT, Giugliani R, et al. FOS Investigators. Natural course of Fabry disease: changing pattern of causes of death in FOS - Fabry outcome survey. J Med Genet 2009;46:548-52.
10. Wanner C, Oliveira JP, Ortiz A, et al. Prognostic indicators of renal disease progression in adults with Fabry disease: natural history data from the Fabry registry. Clin J Am Soc Nephrol 2010;5:2220-8.
11. Echevarria L, Benistan K, Toussaint A, et al. X-chromosome inactivation in female patients with Fabry disease. Clin Genet 2016;89:44-54.
12. Řeboun M, Sikora J, Magner M, et al. Pitfalls of X-chromosome inactivation testing in females with Fabry disease. Am J Med Genet A 2022;188:1979-89.
13. Zhang D, Zhang J, Liang S, Wang J, Liu Z. Clinic-pathologic features and renal outcome of Fabry disease: data from a Chinese cohort. Am J Nephrol 2018;48:137-46.
14. Svarstad E, Marti HP. The changing landscape of Fabry disease. Clin J Am Soc Nephrol 2020;15:569-76.
15. Fogo AB, Bostad L, Svarstad E, et al. all members of the International Study Group of Fabry Nephropathy (ISGFN). Scoring system for renal pathology in Fabry disease: report of the International Study Group of Fabry Nephropathy (ISGFN). Nephrol Dial Transplant 2010;25:2168-77.
16. Tøndel C, Bostad L, Larsen KK, et al. Agalsidase benefits renal histology in young patients with Fabry disease. J Am Soc Nephrol 2013;24:137-48.
17. Valbuena C, Carvalho E, Bustorff M, et al. Kidney biopsy findings in heterozygous Fabry disease females with early nephropathy. Virchows Arch 2008;453:329-38.
18. Najafian B, Tøndel C, Svarstad E, Gubler MC, Oliveira JP, Mauer M. Accumulation of globotriaosylceramide in podocytes in Fabry nephropathy is associated with progressive podocyte loss. J Am Soc Nephrol 2020;31:865-75.
19. Trimarchi H, Canzonieri R, Costales-Collaguazo C, et al. Early decrease in the podocalyxin to synaptopodin ratio in urinary Fabry podocytes. Clin Kidney J 2019;12:53-60.
20. Nikolaenko V, Warnock DG, Mills K, Heywood WE. Elucidating the toxic effect and disease mechanisms associated with Lyso-Gb3 in Fabry disease. Hum Mol Genet 2023;32:2464-72.
21. Matafora V, Cuccurullo M, Beneduci A, et al. Early markers of Fabry disease revealed by proteomics. Mol Biosyst 2015;11:1543-51.
22. Trimarchi H, Ortiz A, Sánchez-Niño MD. Lyso-Gb3 increases αvβ3 integrin gene expression in cultured human podocytes in Fabry nephropathy. J Clin Med 2020;9:3659.
23. Braun F, Abed A, Sellung D, et al. Accumulation of α-synuclein mediates podocyte injury in Fabry nephropathy. J Clin Invest 2023;133:e157782.
25. El Dib R, Gomaa H, Carvalho RP, et al. Enzyme replacement therapy for anderson-Fabry disease. Cochrane Database Syst Rev 2016;7:CD006663.
26. Cybulla M, Nicholls K, Feriozzi S, et al. FOS Study Group. Renoprotective effect of agalsidase alfa: a long-term follow-up of patients with Fabry disease. J Clin Med 2022;11:4810.
27. Beck M, Ramaswami U, Hernberg-Ståhl E, et al. Twenty years of the Fabry outcome survey (FOS): insights, achievements, and lessons learned from a global patient registry. Orphanet J Rare Dis 2022;17:238.
28. Tøndel C, Thurberg BL, DasMahapatra P, et al. Clinical relevance of globotriaosylceramide accumulation in Fabry disease and the effect of agalsidase beta in affected tissues. Mol Genet Metab 2022;137:328-41.
29. Nowak A, Dormond O, Monzambani V, Huynh-Do U, Barbey F. Agalsidase-β should be proposed as first line therapy in classic male Fabry patients with undetectable α-galactosidase A activity. Mol Genet Metab 2022;137:173-8.
30. Arends M, Biegstraaten M, Wanner C, et al. Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: an international cohort study. J Med Genet 2018;55:351-8.
31. Weidemann F, Jovanovic A, Herrmann K, Vardarli I. Chaperone therapy in Fabry disease. Int J Mol Sci 2022;23:1887.
32. Yam GH, Zuber C, Roth J. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder. FASEB J 2005;19:12-8.
33. Müntze J, Gensler D, Maniuc O, et al. Oral chaperone therapy migalastat for treating Fabry disease: enzymatic response and serum biomarker changes after 1 year. Clin Pharmacol Ther 2019;105:1224-33.
34. Coutinho MF, Santos JI, Alves S. Less is more: substrate reduction therapy for lysosomal storage disorders. Int J Mol Sci 2016;17:1065.
35. Schiffmann R, Goker-Alpan O, Holida M, et al. Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry disease, provides sustained plasma concentrations and favorable pharmacodynamics: a-year phase 1/2 clinical trial. J Inherit Metab Dis 2019;42:534-44.
36. Domm JM, Wootton SK, Medin JA, West ML. Gene therapy for Fabry disease: progress, challenges, and outlooks on gene-editing. Mol Genet Metab 2021;134:117-31.
37. Song HY, Chiang HC, Tseng WL, et al. Using CRISPR/Cas9-mediated GLA gene knockout as an in vitro drug screening model for Fabry disease. Int J Mol Sci 2016;17:2089.
38. Germain DP. Reconceptualizing podocyte damage in Fabry disease: new findings identify α-synuclein as a putative therapeutic target. Kidney Int 2024;105:237-9.
39. Liebau MC, Braun F, Höpker K, et al. Dysregulated autophagy contributes to podocyte damage in Fabry’s disease. PLoS One 2013;8:e63506.
40. Li P, Xi Y, Zhang Y, et al. GLA mutations suppress autophagy and stimulate lysosome generation in Fabry disease. Cells 2024;13:437.
41. Tuttolomondo A, Simonetta I, Riolo R, et al. Pathogenesis and molecular mechanisms of Anderson-Fabry disease and possible new molecular addressed therapeutic strategies. Int J Mol Sci 2021;22:10088.
42. Warnock DG, Ortiz A, Mauer M, et al. Fabry Registry. Renal outcomes of agalsidase beta treatment for Fabry disease: role of proteinuria and timing of treatment initiation. Nephrol Dial Transplant 2012;27:1042-9.
43. Warnock DG, Thomas CP, Vujkovac B, et al. Antiproteinuric therapy and Fabry nephropathy: factors associated with preserved kidney function during agalsidase-beta therapy. J Med Genet 2015;52:860-6.
44. Battaglia Y, Bulighin F, Zerbinati L, Vitturi N, Marchi G, Carraro G. Dapaglifozin on albuminuria in chronic kidney disease patients with Fabry disease: the DEFY study design and protocol. J Clin Med 2023;12:3689.
45. Romagnani P, Lasagni L, Remuzzi G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol 2013;9:137-46.
46. Huang B, Zeng Z, Kim S, et al. Long-term expandable mouse and human-induced nephron progenitor cells enable kidney organoid maturation and modeling of plasticity and disease. Cell Stem Cell 2024;31:921-39.e17.
47. Lasagni L, Angelotti ML, Ronconi E, et al. Podocyte regeneration driven by renal progenitors determines glomerular disease remission and can be pharmacologically enhanced. Stem Cell Reports 2015;5:248-63.