REFERENCES
1. Barth PG, Scholte HR, Berden JA, et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 1983;62:327-55.
2. Kelley RI, Cheatham JP, Clark BJ, et al. X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J Pediatr 1991;119:738-47.
3. Zegallai HM, Hatch GM. Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets. Mol Cell Biochem 2021;476:1605-29.
4. Xu Y, Malhotra A, Ren M, Schlame M. The enzymatic function of tafazzin. J Biol Chem 2006;281:39217-24.
5. Xu Y, Kelley RI, Blanck TJ, Schlame M. Remodeling of cardiolipin by phospholipid transacylation. J Biol Chem 2003;278:51380-5.
6. Valianpour F, Mitsakos V, Schlemmer D, et al. Monolysocardiolipins accumulate in Barth syndrome but do not lead to enhanced apoptosis. J Lipid Res 2005;46:1182-95.
7. Xu Y, Sutachan JJ, Plesken H, Kelley RI, Schlame M. Characterization of lymphoblast mitochondria from patients with Barth syndrome. Lab Invest 2005;85:823-30.
8. Gonzalvez F, D’Aurelio M, Boutant M, et al. Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. Biochim Biophys Acta 2013;1832:1194-206.
9. Mejia EM, Zegallai H, Bouchard ED, Banerji V, Ravandi A, Hatch GM. Expression of human monolysocardiolipin acyltransferase-1 improves mitochondrial function in Barth syndrome lymphoblasts. J Biol Chem 2018;293:7564-77.
10. Reyland ME, Jones DN. Multifunctional roles of PKCδ: opportunities for targeted therapy in human disease. Pharmacol Ther 2016;165:1-13.
11. Qvit N, Mochly-Rosen D. The many hats of protein kinase Cδ: one enzyme with many functions. Biochem Soc Trans 2014;42:1529-33.
12. Kim YK, Hammerling U. The mitochondrial PKCδ/retinol signal complex exerts real-time control on energy homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2020;1865:158614.
13. Yang Q, Langston JC, Tang Y, Kiani MF, Kilpatrick LE. The role of tyrosine phosphorylation of protein kinase C delta in infection and inflammation. Int J Mol Sci 2019;20:1498.
14. Acin-Perez R, Hoyos B, Zhao F, et al. Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homoeostasis. FASEB J 2010;24:627-36.
15. Agarwal P, Cole LK, Chandrakumar A, et al. Phosphokinome analysis of Barth syndrome lymphoblasts identify novel targets in the pathophysiology of the disease. Int J Mol Sci 2018;19:2026.
16. Mecklenbräuker I, Saijo K, Zheng NY, Leitges M, Tarakhovsky A. Protein kinase Cdelta controls self-antigen-induced B-cell tolerance. Nature 2002;416:860-5.
17. Mejia EM, Zinko JC, Hauff KD, Xu FY, Ravandi A, Hatch GM. Glucose uptake and triacylglycerol synthesis are increased in barth syndrome lymphoblasts. Lipids 2017;52:161-5.
18. Sparagna GC, Johnson CA, McCune SA, Moore RL, Murphy RC. Quantitation of cardiolipin molecular species in spontaneously hypertensive heart failure rats using electrospray ionization mass spectrometry. J Lipid Res 2005;46:1196-204.
19. Chang W, Zhang M, Chen L, Hatch GM. Berberine inhibits oxygen consumption rate independent of alteration in cardiolipin levels in H9c2 cells. Lipids 2017;52:961-7.
20. Kagan VE, Tyurina YY, Mikulska-Ruminska K, et al. Anomalous peroxidase activity of cytochrome c is the primary pathogenic target in Barth syndrome. Nat Metab 2023;5:2184-205.
21. Lee CF, Chen YC, Liu CY, Wei YH. Involvement of protein kinase C delta in the alteration of mitochondrial mass in human cells under oxidative stress. Free Radic Biol Med 2006;40:2136-46.
22. Acin-Perez R, Hoyos B, Gong J, et al. Regulation of intermediary metabolism by the PKCδ signalosome in mitochondria. FASEB J 2010;24:5033-42.
23. Duncan AL. Monolysocardiolipin (MLCL) interactions with mitochondrial membrane proteins. Biochem Soc Trans 2020;48:993-1004.
24. Ceddia RB, Sweeney G. Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells. J Physiol 2004;555:409-21.
25. Liang Z, Ralph-Epps T, Schmidtke MW, et al. Upregulation of the AMPK-FOXO1-PDK4 pathway is a primary mechanism of pyruvate dehydrogenase activity reduction and leads to increased glucose uptake in tafazzin-deficient cells. Sci Rep 2024;14:11497.
26. Spencer CT, Bryant RM, Day J, et al. Cardiac and clinical phenotype in Barth syndrome. Pediatrics 2006;118:e337-46.
27. Sandoval N, Bauer D, Brenner V, et al. The genomic organization of a human creatine transporter (CRTR) gene located in Xq28. Genomics 1996;35:383-5.
28. Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet 1996;12:385-9.
29. Casey A, Greenhaff PL. Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance? Am J Clin Nutr 2000;72:607S-17S.
30. Lee RG, Balasubramaniam S, Stentenbach M, et al. Deleterious variants in CRLS1 lead to cardiolipin deficiency and cause an autosomal recessive multi-system mitochondrial disease. Hum Mol Genet 2022;31:3597-612.
32. Manet E, Polvèche H, Mure F, et al. Modulation of alternative splicing during early infection of human primary B lymphocytes with epstein-barr virus (EBV): a novel function for the viral EBNA-LP protein. Nucleic Acids Res 2021;49:10657-76.