REFERENCES

1. World Health Organization. Cardiovascular diseases (CVDs) Fact sheet. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) [Last accessed on 12 Apr 2024].

2. Castrichini M, Luzum JA, Pereira N. Pharmacogenetics of antiplatelet therapy. Annu Rev Pharmacol Toxicol 2023;63:211-29.

3. Wang RS, Maron BA, Loscalzo J. Multiomics network medicine approaches to precision medicine and therapeutics in cardiovascular diseases. Arterioscler Thromb Vasc Biol 2023;43:493-503.

4. Ross S, Krebs K, Paré G, Milani L. Pharmacogenomics in stroke and cardiovascular disease: state of the art. Stroke 2023;54:270-8.

5. Kuang Z, Wu J, Tan Y, Zhu G, Li J, Wu M. MicroRNA in the diagnosis and treatment of doxorubicin-induced cardiotoxicity. Biomolecules 2023;13:568.

6. Christiansen MK, Nyegaard M, Jensen HK. Polygenic risk scores in coronary artery disease. Curr Opin Cardiol 2023;38:39-46.

7. Sethi Y, Patel N, Kaka N, et al. Precision medicine and the future of cardiovascular diseases: a clinically oriented comprehensive review. J Clin Med 2023;12:1799.

8. Catchpool M, Ramchand J, Martyn M, et al. A cost-effectiveness model of genetic testing and periodical clinical screening for the evaluation of families with dilated cardiomyopathy. Genet Med 2019;21:2815-22.

9. Kasztura M, Richard A, Bempong NE, Loncar D, Flahault A. Cost-effectiveness of precision medicine: a scoping review. Int J Public Health 2019;64:1261-71.

10. Kiflen M, Le A, Mao S, et al. Cost-effectiveness of polygenic risk scores to guide statin therapy for cardiovascular disease prevention. Circ Genom Precis Med 2022;15:e003423.

11. Wronska A. The role of microRNA in the development, diagnosis, and treatment of cardiovascular disease: recent developments. J Pharmacol Exp Ther 2023;384:123-32.

12. Vaskova E, Ikeda G, Tada Y, Wahlquist C, Mercola M, Yang PC. Sacubitril/Valsartan improves cardiac function and decreases myocardial fibrosis via downregulation of exosomal miR-181a in a rodent chronic myocardial infarction model. J Am Heart Assoc 2020;9:e015640.

13. Stojkovic S, Koller L, Sulzgruber P, et al. Liver-specific microRNA-122 as prognostic biomarker in patients with chronic systolic heart failure. Int J Cardiol 2020;303:80-5.

14. Wang H, Chen Y, Tao T, et al. Identification of microRNA biomarkers in serum of patients at different stages of atrial fibrillation. Heart Lung 2020;49:902-8.

15. Bejleri J, Jirström E, Donovan P, Williams DJ, Pfeiffer S. Diagnostic and prognostic circulating microrna in acute stroke: a systematic and bioinformatic analysis of current evidence. J Stroke 2021;23:162-82.

16. Pérez-Cremades D, Chen J, Assa C, Feinberg MW. MicroRNA-mediated control of myocardial infarction in diabetes. Trends Cardiovasc Med 2023;33:195-201.

17. Bhatti JS, Khullar N, Vijayvergiya R, Navik U, Bhatti GK, Reddy PH. Mitochondrial miRNA as epigenomic signatures: visualizing aging-associated heart diseases through a new lens. Ageing Res Rev 2023;86:101882.

18. Guo YT, Xiao YC, Xu YL, et al. The effects of microRNAs in the development of heart failure. Curr Cardiol Rep 2023;25:747-59.

19. Samra M, Srivastava K. Non-coding RNA and their potential role in cardiovascular diseases. Gene 2023;851:147011.

20. Long Q, Lv B, Jiang S, Lin J. The landscape of circular RNAs in cardiovascular diseases. Int J Mol Sci 2023;24:4571.

21. Joaquim VHA, Pereira NP, Fernandes T, Oliveira EM. Circular RNAs as a diagnostic and therapeutic target in cardiovascular diseases. Int J Mol Sci 2023;24:2125.

22. Wang K, Gao XQ, Wang T, Zhou LY. The function and therapeutic potential of circular RNA in cardiovascular diseases. Cardiovasc Drugs Ther 2023;37:181-98.

23. Neufeldt D, Cushman S, Bär C, Thum T. Circular RNAs at the intersection of cancer and heart disease: potential therapeutic targets in cardio-oncology. Cardiovasc Res 2023;119:1495-508.

24. Singh DD, Kim Y, Choi SA, Han I, Yadav DK. Clinical significance of microRNAs, long non-coding rnas, and circRNAs in cardiovascular diseases. Cells 2023;12:1629.

25. Sánchez-Cabo F, Fuster V, Silla-Castro JC, et al. Subclinical atherosclerosis and accelerated epigenetic age mediated by inflammation: a multi-omics study. Eur Heart J 2023;44:2698-709.

26. Solari FA, Krahn D, Swieringa F, et al. Multi-omics approaches to study platelet mechanisms. Curr Opin Chem Biol 2023;73:102253.

27. Ferrucci L, Candia J, Ubaida-Mohien C, et al. Transcriptomic and proteomic of gastrocnemius muscle in peripheral artery disease. Circ Res 2023;132:1428-43.

28. Nurmohamed NS, Kraaijenhof JM, Mayr M, et al. Proteomics and lipidomics in atherosclerotic cardiovascular disease risk prediction. Eur Heart J 2023;44:1594-607.

29. Garmany R, Bos JM, Tester DJ, et al. Multi-omic architecture of obstructive hypertrophic cardiomyopathy. Circ Genom Precis Med 2023;16:e003756.

30. Moore J, Ewoldt J, Venturini G, et al. Multi-omics profiling of hypertrophic cardiomyopathy reveals altered mechanisms in mitochondrial dynamics and excitation-contraction coupling. Int J Mol Sci 2023;24:4724.

31. Rega S, Farina F, Bouhuis S, et al. Multi-omics in thoracic aortic aneurysm: the complex road to the simplification. Cell Biosci 2023;13:131.

32. Hasman M, Mayr M, Theofilatos K. Uncovering protein networks in cardiovascular proteomics. Mol Cell Proteom 2023;22:100607.

33. Li Z, Brittan M, Mills NL. A multimodal omics framework to empower target discovery for cardiovascular regeneration. Cardiovasc Drugs Ther 2024;38:223-36.

34. Adua E. Decoding the mechanism of hypertension through multiomics profiling. J Hum Hypertens 2023;37:253-64.

35. Maiorino E, Loscalzo J. Phenomics and robust multiomics data for cardiovascular disease subtyping. Arterioscler Thromb Vasc Biol 2023;43:1111-23.

36. Safabakhsh S, Ma WF, Miller CL, Laksman Z. Cardiovascular utility of single cell RNA-Seq. Curr Opin Cardiol 2023;38:193-200.

37. Miranda AMA, Janbandhu V, Maatz H, et al. Single-cell transcriptomics for the assessment of cardiac disease. Nat Rev Cardiol 2023;20:289-308.

38. Wang S, Luo Z, Yuan L, et al. tRNA-derived small rnas: novel insights into the pathogenesis and treatment of cardiovascular diseases. J Cardiovasc Transl Res 2023;16:300-9.

39. Balachander K, Priyadharsini JV, Roy A, Paramasivam A. Emerging role of RNA m5C modification in cardiovascular diseases. J Cardiovasc Transl Res 2023;16:598-605.

40. Yin Y, Tan M, Han L, et al. The hippo kinases MST1/2 in cardiovascular and metabolic diseases: a promising therapeutic target option for pharmacotherapy. Acta Pharm Sin B 2023;13:1956-75.

41. Shao Y, Wang Y, Sun L, Zhou S, Xu J, Xing D. MST1: A future novel target for cardiac diseases. Int J Biol Macromol 2023;239:124296.

42. Cai Y, Sun Z, Shao C, Wang Z, Li L. Role of galectin-3 in vascular calcification. Glycoconj J 2023;40:149-58.

43. Emami Meybodi SM, Soleimani N, Yari A, et al. Circulatory long noncoding RNAs (circulatory-LNC-RNAs) as novel biomarkers and therapeutic targets in cardiovascular diseases: implications for cardiovascular diseases complications. Int J Biol Macromol 2023;225:1049-71.

44. Ao X, Ding W, Li X, et al. Non-coding RNAs regulating mitochondrial function in cardiovascular diseases. J Mol Med 2023;101:501-26.

45. Heshmatzad K, Naderi N, Maleki M, et al. Role of non-coding variants in cardiovascular disease. J Cell Mol Med 2023;27:1621-36.

46. Jiang X, Lei R. Extracellular lncRNAs secreted and absorbed by cardiomyocytes. J Cell Biochem 2023;124:785-96.

47. Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis 2022;13:644.

48. Gareri C, Polimeni A, Giordano S, Tammè L, Curcio A, Indolfi C. Antisense oligonucleotides and small interfering RNA for the treatment of dyslipidemias. J Clin Med 2022;11:3884.

49. Yeang C, Karwatowska-Prokopczuk E, Su F, et al. Effect of pelacarsen on lipoprotein(a) cholesterol and corrected low-density lipoprotein cholesterol. J Am Coll Cardiol 2022;79:1035-46.

50. Kim Y, Zharkinbekov Z, Sarsenova M, Yeltay G, Saparov A. Recent advances in gene therapy for cardiac tissue regeneration. Int J Mol Sci 2021;22:9206.

51. Brown EE, Murray B. A Practical guide to genetic testing in inherited heart disease. Card Electrophysiol Clin 2023;15:241-7.

52. Bowen JM, Hernandez M, Johnson DS, et al. Diagnosis and management of vascular Ehlers-Danlos syndrome: experience of the UK national diagnostic service, Sheffield. Eur J Hum Genet 2023;31:749-60.

53. Giuliani L, Di Toro A, Urtis M, et al. Prevalence and complications of aberrant subclavian artery in patients with heritable and nonheritable arteriopathies. J Am Coll Cardiol 2023;81:979-91.

54. Specterman MJ, Behr ER. Cardiogenetics: the role of genetic testing for inherited arrhythmia syndromes and sudden death. Heart 2023;109:434-41.

55. Asad ZUA, Krishan S, Roman D, Yousaf AF, Stavrakis S. Same gene, different story (a case report of congenital long QT syndrome subtype 8 with a novel mutation). Am J Cardiol 2023;200:13-7.

56. Auricchio A, Demarchi A, Özkartal T, et al. Role of genetic testing in young patients with idiopathic atrioventricular conduction disease. Europace 2023;25:643-50.

57. Lalaguna L, Ramos-hernández L, Priori SG, Lara-pezzi E. Genome editing and inherited cardiac arrhythmias. In: Xiao J, editor. Genome editing in cardiovascular and metabolic diseases. Singapore: Springer Nature; 2023. pp. 115-27.

58. Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: the Framingham heart study. Circulation 2004;110:1042-6.

59. Sagris M, Vardas EP, Theofilis P, Antonopoulos AS, Oikonomou E, Tousoulis D. Atrial fibrillation: pathogenesis, predisposing factors, and genetics. Int J Mol Sci 2021;23:6.

60. Kontorovich AR. Approaches to genetic screening in cardiomyopathies: practical guidance for clinicians. JACC Heart Fail 2023;11:133-42.

61. Brodehl A, Gerull B. Genetic insights into primary restrictive cardiomyopathy. J Clin Med 2022;11:2094.

62. Mansoori GA, Mahmeed WA, Wani S, et al. Introducing and implementing genetic assessment in cardio-obstetrics clinical practice: clinical and genetic workup of patients with cardiomyopathy. Int J Mol Sci 2023;24:9119.

63. Koslow M, Mondaca-Ruff D, Xu X. Transcriptome studies of inherited dilated cardiomyopathies. Mamm Genome 2023;34:312-22.

64. Ehrlich L, Prakash SK. Copy-number variation in congenital heart disease. Curr Opin Genet Dev 2022;77:101986.

65. Dotzler SM, Kim CSJ, Gendron WAC, et al. Suppression-replacement KCNQ1 gene therapy for type 1 long QT syndrome. Circulation 2021;143:1411-25.

66. Yamamoto Y, Makiyama T, Harita T, et al. Allele-specific ablation rescues electrophysiological abnormalities in a human iPS cell model of long-QT syndrome with a CALM2 mutation. Hum Mol Genet 2017;26:1670-7.

67. Vermersch E, Jouve C, Hulot JS. CRISPR/Cas9 gene-editing strategies in cardiovascular cells. Cardiovasc Res 2020;116:894-907.

68. Liu N, Olson EN. CRISPR modeling and correction of cardiovascular disease. Circ Res 2022;130:1827-50.

69. Kohaut E, Ader F, Rooryck C, et al. Morphological and genetic causes of fetal cardiomyopathies. Clin Genet 2023;104:63-72.

70. Lawley CM, Kaski JP. Clinical and genetic screening for hypertrophic cardiomyopathy in paediatric relatives: changing paradigms in clinical practice. J Clin Med 2023;12:2788.

71. Sheppard MN, van der Wal AC, Banner J, et al. Association for European Cardiovascular Pathology (AECVP). Genetically determined cardiomyopathies at autopsy: the pivotal role of the pathologist in establishing the diagnosis and guiding family screening. Virchows Arch 2023;482:653-69.

72. Robles-Mezcua A, Ruíz-Salas A, Medina-Palomo C, et al. The novel variant NP_00454563.2 (p.Glu259Glyfs*77) in gene PKP2 associated with arrhythmogenic cardiomyopathy in 8 families from Malaga, Spain. Genes 2023;14:1468.

73. Christensen KD, McMahon PM, Galbraith LN, et al. Benefits, harms, and costs of newborn genetic screening for hypertrophic cardiomyopathy: estimates from the PreEMPT model. Genet Med 2023;25:100797.

74. Burns C, Yeates L, Sweeting J, Semsarian C, Ingles J. Evaluating a communication aid for return of genetic results in families with hypertrophic cardiomyopathy: a randomized controlled trial. J Genet Couns 2023;32:425-34.

75. Chang CS, Hong SY, Kim SY, et al. Prevalence of associated extracardiac anomalies in prenatally diagnosed congenital heart diseases. PLoS One 2021;16:e0248894.

76. Formigari R, Michielon G, Digilio MC, et al. Genetic syndromes and congenital heart defects: how is surgical management affected? Eur J Cardiothorac Surg 2009;35:606-14.

77. Brunham LR, Hegele RA. What Is the Prevalence of familial hypercholesterolemia? Arterioscler Thromb Vasc Biol 2021;41:2629-31.

78. Knowles JW, O'Brien EC, Greendale K, et al. Reducing the burden of disease and death from familial hypercholesterolemia: a call to action. Am Heart J 2014;168:807-11.

79. Lagace TA. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr Opin Lipidol 2014;25:387-93.

80. Chambergo-Michilot D, Alur A, Kulkarni S, Agarwala A. Mipomersen in familial hypercholesterolemia: an update on health-related quality of life and patient-reported outcomes. Vasc Health Risk Manag 2022;18:73-80.

81. Wiegman A, Greber-Platzer S, Ali S, et al. Evinacumab for pediatric patients with homozygous familial hypercholesterolemia. Circulation 2024;149:343-53.

82. Adam RC, Mintah IJ, Alexa-Braun CA, et al. Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. J Lipid Res 2020;61:1271-86.

83. Karwatowska-Prokopczuk E, Lesogor A, Yan JH, et al. Efficacy and safety of pelacarsen in lowering Lp(a) in healthy Japanese subjects. J Clin Lipidol 2023;17:181-8.

84. Koren MJ, Moriarty PM, Baum SJ, et al. Preclinical development and phase 1 trial of a novel siRNA targeting lipoprotein(a). Nat Med 2022;28:96-103.

85. Kalia I, Shope R, Reilly M, Schwartz L. Addressing the underdiagnosis of familial hypercholesterolemia: a mixed methods study exploring the knowledge and practice behaviors of cardiology healthcare providers. J Clin Transl Sci 2023;7:e92.

86. Shuldiner AR, O'Connell JR, Bliden KP, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 2009;302:849-57.

87. Gurbel PA, Tantry US, Shuldiner AR, Kereiakes DJ. Genotyping: one piece of the puzzle to personalize antiplatelet therapy. J Am Coll Cardiol 2010;56:112-6.

88. Tantry US, Bliden KP, Wei C, et al. First analysis of the relation between CYP2C19 genotype and pharmacodynamics in patients treated with ticagrelor versus clopidogrel: the ONSET/OFFSET and RESPOND genotype studies. Circ Cardiovasc Genet 2010;3:556-66.

89. Mega JL, Simon T, Collet JP, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA 2010;304:1821-30.

90. Gurbel PA, Bliden KP, Antonino MJ, et al. The effect of elinogrel on high platelet reactivity during dual antiplatelet therapy and the relation to CYP2C19*2 genotype: first experience in patients. J Thromb Haemost 2010;8:43-53.

91. Gurbel PA, Shuldiner AR, Bliden KP, Ryan K, Pakyz RE, Tantry US. The relation between CYP2C19 genotype and phenotype in stented patients on maintenance dual antiplatelet therapy. Am Heart J 2011;161:598-604.

92. Jeong YH, Tantry US, Kim IS, et al. Effect of CYP2C19*2 and *3 loss-of-function alleles on platelet reactivity and adverse clinical events in East Asian acute myocardial infarction survivors treated with clopidogrel and aspirin. Circ Cardiovasc Interv 2011;4:585-94.

93. Price MJ, Tantry US, Gurbel PA. The influence of CYP2C19 polymorphisms on the pharmacokinetics, pharmacodynamics, and clinical effectiveness of P2Y12 inhibitors. Rev Cardiovasc Med 2011;12:1-12.

94. Gurbel PA, Jeong YH, Tantry US. Personalized antiplatelet therapy: state of the art. JRSM Cardiovasc Dis 2012;1:1-10.

95. Gurbel PA, Tantry US. Do platelet function testing and genotyping improve outcome in patients treated with antithrombotic agents? Circulation 2012;125:1276-87.

96. Tantry US, Jeong YH, Navarese EP, Kubica J, Gurbel PA. Influence of genetic polymorphisms on platelet function, response to antiplatelet drugs and clinical outcomes in patients with coronary artery disease. Expert Rev Cardiovasc Ther 2013;11:447-62.

97. Jeong YH, Abadilla KA, Tantry US, et al. Influence of CYP2C19*2 and *3 loss-of-function alleles on the pharmacodynamic effects of standard- and high-dose clopidogrel in East Asians undergoing percutaneous coronary intervention: the results of the ACCEL-DOUBLE-2N3 study. J Thromb Haemost 2013;11:1194-7.

98. Erlinge D, James S, Duvvuru S, et al. Clopidogrel metaboliser status based on point-of-care CYP2C19 genetic testing in patients with coronary artery disease. Thromb Haemost 2014;111:943-50.

99. Gurbel PA, Bergmeijer TO, Tantry US, et al. The effect of CYP2C19 gene polymorphisms on the pharmacokinetics and pharmacodynamics of prasugrel 5-mg, prasugrel 10-mg and clopidogrel 75-mg in patients with coronary artery disease. Thromb Haemost 2014;112:589-97.

100. Jeong YH, Bliden KP, Shuldiner AR, Tantry US, Gurbel PA. Thrombin-induced platelet-fibrin clot strength: relation to high on-clopidogrel platelet reactivity, genotype, and post-percutaneous coronary intervention outcomes. Thromb Haemost 2014;111:713-24.

101. Doll JA, Neely ML, Roe MT, et al. TRILOGY ACS Investigators. Impact of CYP2C19 metabolizer status on patients with ACS treated with prasugrel versus clopidogrel. J Am Coll Cardiol 2016;67:936-47.

102. Winter MP, Grove EL, De Caterina R, et al. Advocating cardiovascular precision medicine with P2Y12 receptor inhibitors. Eur Heart J Cardiovasc Pharmacother 2017;3:221-34.

103. Verma SS, Bergmeijer TO, Gong L, et al. ICPC Investigators. Genomewide association study of platelet reactivity and cardiovascular response in patients treated with clopidogrel: a study by the international clopidogrel pharmacogenomics consortium. Clin Pharmacol Ther 2020;108:1067-77.

104. Lewis JP, Backman JD, Reny JL, et al. ICPC Investigators. Pharmacogenomic polygenic response score predicts ischaemic events and cardiovascular mortality in clopidogrel-treated patients. Eur Heart J Cardiovasc Pharmacother 2020;6:203-10.

105. Shawky A, Sabit H, Nazih M, Baraka K, El-Zawahry M. CYP2C19 polymorphism in ischemic heart disease patients taking clopidogrel after percutaneous coronary intervention in Egypt. J Epidemiol Glob Health 2023;13:374-83.

106. Mehta MP, Gajjar ND, Patel RJ, Joshi LP, Shah GB. Prevalence of CYP2C9 and CYP2C19 variants and the impact on clopidogrel efficacy in patients having CYPC19*2 variant. Indian J Pharmacol 2023;55:27-33.

107. Thomas CD, Williams AK, Lee CR, Cavallari LH. Pharmacogenetics of P2Y(12) receptor inhibitors. Pharmacotherapy 2023;43:158-75.

108. Berg JM, van den Broek WWA. Another step toward CYP2C19 genotype-guided therapy in treatment with dual antiplatelet therapy. JACC Cardiovasc Interv 2023;16:826-8.

109. Levens AD, den Haan MC, Jukema JW, et al. Feasibility of community pharmacist-initiated and point-of-care CYP2C19 genotype-guided de-escalation of oral P2Y12 inhibitors. Genes 2023;14:578.

110. Dong OM, Friede KA, Chanfreau-Coffinier C, Voora D. Cost-effectiveness of CYP2C19-guided P2Y12 inhibitors in Veterans undergoing percutaneous coronary intervention for acute coronary syndromes. Eur Heart J Qual Care Clin Outcomes 2023;9:249-57.

111. Koufaki MI, Fragoulakis V, Díaz-Villamarín X, et al. Economic evaluation of pharmacogenomic-guided antiplatelet treatment in Spanish patients suffering from acute coronary syndrome participating in the U-PGx PREPARE study. Hum Genomics 2023;17:51.

112. Silva GFD, Lopes BM, Moser V, Ferreira LE. Impact of pharmacogenetics on aspirin resistance: a systematic review. Arq Neuropsiquiatr 2023;81:62-73.

113. Herrera-Galeano JE, Becker DM, Wilson AF, et al. A novel variant in the platelet endothelial aggregation receptor-1 gene is associated with increased platelet aggregability. Arterioscler Thromb Vasc Biol 2008;28:1484-90.

114. Lewis JP, Riaz M, Xie S, et al. Genetic variation in PEAR1, cardiovascular outcomes and effects of aspirin in a healthy elderly population. Clin Pharmacol Ther 2020;108:1289-98.

115. Friede KA, Myers RA, Gales J, et al. An antiplatelet response gene expression signature is associated with bleeding. Cardiovasc Res 2023;119:551-60.

116. Tidbury N, Preston J, Lip GYH. Lessons learned from the influence of CYP2C9 genotype on warfarin dosing. Expert Opin Drug Metab Toxicol 2023;19:185-8.

117. Liu TY, Hsu HY, You YS, et al. Efficacy of warfarin therapy guided by pharmacogenetics: a real-world investigation among han taiwanese. Clin Ther 2023;45:662-70.

118. Šimičević L, Slišković AM, Kirhmajer MV, et al. Risk factors for rivaroxaban-related bleeding events-possible role of pharmacogenetics: case series. Pharmacy 2023;11:29.

119. Thompson LE, Davis BH, Narayan R, Goff B, Brown TM, Limdi NA. Personalizing direct oral anticoagulant therapy for a diverse population: role of race, kidney function, drug interactions, and pharmacogenetics. Clin Pharmacol Ther 2023;113:585-99.

120. Massmann A, Van Heukelom J, Green RC, et al. SLCO1B1 gene-based clinical decision support reduces statin-associated muscle symptoms risk with simvastatin. Pharmacogenomics 2023;24:399-409.

121. Shatnawi A, Kamran Z, Al-Share Q. Pharmacogenomics of lipid-lowering agents: the impact on efficacy and safety. Per Med 2023;20:65-86.

122. AlAzzeh O, Roman YM. The frequency of rs2231142 in ABCG2 among Native Hawaiian and Pacific Islander subgroups: implications for personalized rosuvastatin dosing. Pharmacogenomics 2023;24:173-82.

123. Alrajeh K, Roman YM. The frequency of rs2231142 in ABCG2 among Asian subgroups: implications for personalized rosuvastatin dosing. Pharmacogenomics 2023;24:15-26.

124. Tornio A, Bigossi M, Siddiqui MK, et al. The cholesterol-lowering effect of statins is modified by LILRB5 intolerance genotype: Results from a recruit-by-genotype clinical trial. Front Pharmacol 2023;14:1090010.

125. Valverde-Hernández JC, Flores-Cruz A, Chavarría-Soley G, Silva de la Fuente S, Campos-Sánchez R. Frequencies of variants in genes associated with dyslipidemias identified in Costa Rican genomes. Front Genet 2023;14:1114774.

126. Dawed AY, Mari A, Brown A, et al. DIRECT consortium. Pharmacogenomics of GLP-1 receptor agonists: a genome-wide analysis of observational data and large randomised controlled trials. Lancet Diabetes Endo 2023;11:33-41.

127. Sarhan N, Essam Abou Warda A, Alsahali S, Alanazi AS. Impact of vitamin D supplementation on the clinical outcomes and epigenetic markers in patients with acute coronary syndrome. Pharmaceuticals 2023;16:262.

128. Oluwole OG, Henry M. Genomic medicine in Africa: a need for molecular genetics and pharmacogenomics experts. Curr Med Res Opin 2023;39:141-7.

129. Oni-Orisan A, Tuteja S, Hoffecker G, et al. Pharmacogenomics Global Research Network (PGRN) Publications Committee. An introductory tutorial on cardiovascular pharmacogenetics for healthcare providers. Clin Pharmacol Ther 2023;114:275-87.

130. Saleh A, Al-Abcha A, Pereira N. Pharmacogenetics of cardiovascular drugs. Curr Opin Cardiol 2023;38:207-14.

131. Nogueiras-Álvarez R. Pharmacogenomics in clinical trials: an overview. Front Pharmacol 2023;14:1247088.

132. Tardif JC, Pfeffer MA, Dubé MP, Investigators dG. Pharmacogenetics-guided dalcetrapib therapy after an acute coronary syndrome: the dal-GenE trial. Eur Heart J 2022;43:5062-3.

133. Ommen SR, Mital S, Burke MA, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation 2020;142:e558-631.

134. Musunuru K, Hershberger RE, Day SM, et al. Genetic testing for inherited cardiovascular diseases: a scientific statement from the American heart association. Circ Genom Precis Med 2020;13:e000067.

135. Landstrom AP, Kim JJ, Gelb BD, et al. Genetic testing for heritable cardiovascular diseases in pediatric patients: a scientific statement from the American heart association. Circ Genom Precis Med 2021;14:e000086.

136. Isselbacher EM, Preventza O, Hamilton Black J 3rd, et al. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: a report of the American heart association/American college of cardiology joint committee on clinical practice guidelines. Circulation 2022;146:e334-482.

137. Landstrom AP, Chahal AA, Ackerman MJ, et al. Interpreting incidentally identified variants in genes associated with heritable cardiovascular disease: a scientific statement from the American heart association. Circ Genom Precis Med 2023;16:e000092.

138. Wilde AAM, Semsarian C, Márquez MF, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus statement on the state of genetic testing for cardiac diseases. Europace 2022;24:1307-67.

139. Genetic testing for cardiac disease. Available from: https://www.uhcprovider.com/content/dam/provider/docs/public/policies/oxford/gene-expression-tests-cardiac-conditions-ohp.pdf [Last accessed on 12 Apr 2024].

140. Genetic testing for cardiovascular disease. Available from: https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?lcdId=39084&ver=5 [Last accessed on 12 Apr 2024].

142. Abdullah-Koolmees H, van Keulen AM, Nijenhuis M, Deneer VHM. Pharmacogenetics guidelines: overview and comparison of the DPWG, CPIC, CPNDS, and RNPGx guidelines. Front Pharmacol 2020;11:595219.

143. Tayeh MK, Gaedigk A, Goetz MP, et al. ACMG Laboratory Quality Assurance Committee. Electronic address: [email protected]. Clinical pharmacogenomic testing and reporting: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2022;24:759-68.

144. Table of pharmacogenetic associations. Available from: https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations [Last accessed on 12 Apr 2024].

145. Johnson JA, Caudle KE, Gong L, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 Update. Clin Pharmacol Ther 2017;102:397-404.

146. Sibbing D, Aradi D, Alexopoulos D, et al. Updated expert consensus statement on platelet function and genetic testing for Guiding P2Y12 receptor inhibitor treatment in percutaneous coronary intervention. JACC Cardiovasc Interv 2019;12:1521-37.

147. Lee CR, Luzum JA, Sangkuhl K, et al. Clinical pharmacogenetics implementation consortium guideline for CYP2C19 genotype and clopidogrel therapy: 2022 update. Clin Pharmacol Ther 2022;112:959-67.

148. Cooper-DeHoff RM, Niemi M, Ramsey LB, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1, ABCG2, and CYP2C9 genotypes and statin-associated musculoskeletal symptoms. Clin Pharmacol Ther 2022;111:1007-21.

149. MolDX: pharmacogenomics testing. Available from: https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?LCDId=38294&ver=16 [Last accessed on 12 Apr 2024].

150. Pritchard D, Patel JN, Stephens LE, McLeod HL. Comparison of FDA table of pharmacogenetic associations and clinical pharmacogenetics implementation consortium guidelines. Am J Health Syst Pharm 2022;79:993-1005.

151. Dellefave-Castillo LM, Cirino AL, Callis TE, et al. Assessment of the diagnostic yield of combined cardiomyopathy and arrhythmia genetic testing. JAMA Cardiol 2022;7:966-74.

152. Mighton C, Shickh S, Uleryk E, Pechlivanoglou P, Bombard Y. Clinical and psychological outcomes of receiving a variant of uncertain significance from multigene panel testing or genomic sequencing: a systematic review and meta-analysis. Genet Med 2021;23:22-33.

153. Richards S, Aziz N, Bale S, et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24.

154. Reuter C, Chun N, Pariani M, Hanson-Kahn A. Understanding variants of uncertain significance in the era of multigene panels: through the eyes of the patient. J Genet Couns 2019;28:878-86.

155. Wong EK, Bartels K, Hathaway J, et al. Perceptions of genetic variant reclassification in patients with inherited cardiac disease. Eur J Hum Genet 2019;27:1134-42.

156. Gordon AS, Zouk H, Venner E, et al. Clinical Annotation Working Group. Frequency of genomic secondary findings among 21,915 eMERGE network participants. Genet Med 2020;22:1470-7.

157. McKnight D, Morales A, Hatchell KE, et al. ELEVIATE Consortium. Genetic testing to inform epilepsy treatment management from an international study of clinical practice. JAMA Neurol 2022;79:1267-76.

158. Lemke AA, Amendola LM, Thompson J, et al. Patient-reported outcomes and experiences with population genetic testing offered through a primary care network. Genet Test Mol Biomarkers 2021;25:152-60.

159. Sanderson SC, Linderman MD, Suckiel SA, et al. Psychological and behavioural impact of returning personal results from whole-genome sequencing: the HealthSeq project. Eur J Hum Genet 2017;25:280-92.

160. Abdallaoui OEA, Tornyos D, Lukács R, Szabó D, Komócsi A. Individualized or uniform de-escalation strategies for antiplatelet therapy in acute coronary syndrome: a review of clinical trials with platelet function testing and genetic testing-based protocols. Int J Mol Sci 2023;24:9071.

161. Nomura A, Okada H, Nohara A, Kawashiri MA, Takamura M, Tada H. Impact of providing genetics-based future cardiovascular risk on LDL-C in patients with familial hypercholesterolemia. J Clin Lipidol 2023;17:622-32.

162. Verdonschot JAJ, Hazebroek MR, Krapels IPC, et al. Implications of genetic testing in dilated cardiomyopathy. Circ Genom Precis Med 2020;13:476-87.

163. Bradford WH, Zhang J, Gutierrez-lara EJ, et al. Plakophilin 2 gene therapy prevents and rescues arrhythmogenic right ventricular cardiomyopathy in a mouse model harboring patient genetics. Nat Cardiovasc Res 2023;2:1246-61.

164. van Opbergen CJM, Narayanan B, Sacramento CB, et al. AAV-mediated delivery of Plakophilin-2a arrests progression of arrhythmogenic right ventricular cardiomyopathy in murine hearts: preclinical evidence supporting gene therapy in humans. Circ Genom Precis Med 2024;17:e004305.

165. Morales A, Goehringer J, Sanoudou D. Evolving cardiovascular genetic counseling needs in the era of precision medicine. Front Cardiovasc Med 2023;10:1161029.

166. Rickman AF, Fitzgerald-Butt SM, Spoonamore KG, Ware SM, Helm BM. A descriptive investigation of clinical practice models used by cardiovascular genetic counselors in North America. J Genet Couns 2023;32:362-75.

167. Christian S, Dzwiniel T. Principles of genetic counseling in inherited heart conditions. Card Electrophysiol Clin 2023;15:229-39.

168. Girolami F, Gozzini A, Pálinkás ED, et al. Genetic testing and counselling in hypertrophic cardiomyopathy: frequently asked questions. J Clin Med 2023;12:2489.

169. Tromp TR, Reijman MD, Wiegman A, et al. Counseling couples at risk of having a child with homozygous familial hypercholesterolemia - clinical experience and recommendations. J Clin Lipidol 2023;17:291-6.

170. O'Sullivan JW, Raghavan S, Marquez-Luna C, et al. Polygenic risk scores for cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2022;146:e93-118.

171. Abraham G, Havulinna AS, Bhalala OG, et al. Genomic prediction of coronary heart disease. Eur Heart J 2016;37:3267-78.

172. Natarajan P, Young R, Stitziel NO, et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation 2017;135:2091-101.

173. Inouye M, Abraham G, Nelson CP, et al. UK Biobank CardioMetabolic Consortium CHD Working Group. Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J Am Coll Cardiol 2018;72:1883-93.

174. O'Sullivan JW, Ashley EA, Elliott PM. Polygenic risk scores for the prediction of cardiometabolic disease. Eur Heart J 2023;44:89-99.

175. Weindling P. The origins of informed consent: the international scientific commission on medical war crimes, and the Nuremberg code. Bull Hist Med 2001;75:37-71.

176. World Medical Association Inc. Declaration of Helsinki. Ethical principles for medical research involving human subjects. J Indian Med Assoc 2009;107:403-5.

177. Nurmi SM, Halkoaho A, Moilanen J, Remes AM, Solje E. The ethical implications of genetic testing in neurodegenerative diseases: a systematic review. Scand J Caring Sci 2021;35:1057-74.

178. Ascencio-Carbajal T, Saruwatari-Zavala G, Navarro-Garcia F, Frixione E. Genetic/genomic testing: defining the parameters for ethical, legal and social implications (ELSI). BMC Med Ethics 2021;22:156.

179. Panacer KS. Ethical issues associated with direct-to-consumer genetic testing. Cureus 2023;15:e39918.

180. Beig Goharrizi MA, Ghodsi S, Memarjafari MR. Implications of CRISPR-Cas9 genome editing methods in atherosclerotic cardiovascular diseases. Curr Probl Cardiol 2023;48:101603.

181. Li ZH, Wang J, Xu JP, Wang J, Yang X. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Mil Med Res 2023;10:12.

182. Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding time lags in translational research. J R Soc Med 2011;104:510-20.

183. Mathur A, Mohan V, Ameta D, Gaurav B, Haranahalli P. Aortic aneurysm. J Transl Int Med 2016;4:35-41.

184. Yuan SM, Jing H. Marfan's syndrome: an overview. Sao Paulo Med J 2010;128:360-6.

185. Krahn AD, Laksman Z, Sy RW, et al. Congenital long QT syndrome. JACC Clin Electrophysiol 2022;8:687-706.

186. Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol 2012;5:868-77.

187. Anttonen O, Junttila MJ, Rissanen H, Reunanen A, Viitasalo M, Huikuri HV. Prevalence and prognostic significance of short QT interval in a middle-aged Finnish population. Circulation 2007;116:714-20.

188. Guerrier K, Kwiatkowski D, Czosek RJ, Spar DS, Anderson JB, Knilans TK. Short QT interval prevalence and clinical outcomes in a pediatric population. Circ Arrhythm Electrophysiol 2015;8:1460-4.

189. Pérez-Riera AR, Barbosa-Barros R, de Rezende Barbosa MPC, Daminello-Raimundo R, de Lucca AA Jr, de Abreu LC. Catecholaminergic polymorphic ventricular tachycardia, an update. Ann Noninvasive Electrocardiol 2018;23:e12512.

190. Krahn AD, Wilde AAM, Calkins H, et al. Arrhythmogenic right ventricular cardiomyopathy. JACC Clin Electrophysiol 2022;8:533-53.

191. Krahn AD, Behr ER, Hamilton R, Probst V, Laksman Z, Han HC. Brugada syndrome. JACC Clin Electrophysiol 2022;8:386-405.

192. Maron BJ, Desai MY, Nishimura RA, et al. Diagnosis and evaluation of hypertrophic cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 2022;79:372-89.

193. Heymans S, Lakdawala NK, Tschöpe C, Klingel K. Dilated cardiomyopathy: causes, mechanisms, and current and future treatment approaches. Lancet 2023;402:998-1011.

194. Fatkin D, Calkins H, Elliott P, James CA, Peters S, Kovacic JC. Contemporary and future approaches to precision medicine in inherited cardiomyopathies: JACC focus seminar 3/5. J Am Coll Cardiol 2021;77:2551-72.

195. van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 2011;58:2241-7.

196. Beheshti SO, Madsen CM, Varbo A, Nordestgaard BG. Worldwide prevalence of familial hypercholesterolemia: meta-analyses of 11 million subjects. J Am Coll Cardiol 2020;75:2553-66.

197. Tada H, Nohara A, Inazu A, Sakuma N, Mabuchi H, Kawashiri MA. Sitosterolemia, hypercholesterolemia, and coronary artery disease. J Atheroscler Thromb 2018;25:783-9.

198. Tada H, Nomura A, Ogura M, et al. Diagnosis and management of sitosterolemia 2021. J Atheroscler Thromb 2021;28:791-801.

199. Ruopp NF, Cockrill BA. Diagnosis and treatment of pulmonary arterial hypertension: a review. JAMA 2022;327:1379-91.

200. Rehm HL, Berg JS, Brooks LD, et al. ClinGen. ClinGen - the clinical genome resource. N Engl J Med 2015;372:2235-42.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/