REFERENCES
1. Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: overview and treatment options. Pharm Ther 2014;39:638-45.
2. McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia-an overview. JAMA Psychiatry 2020;77:201-10.
3. Kanwal A, Pardo JV, Naz S. RGS3 and IL1RAPL1 missense variants implicate defective neurotransmission in early-onset inherited schizophrenias. J Psychiatry Neurosci 2022;47:E379-90.
4. Trubetskoy V, Pardiñas AF, Qi T, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 2022;604:502-8.
5. Henriksen MG, Nordgaard J, Jansson LB. Genetics of Schizophrenia: overview of methods, findings and limitations. Front Hum Neurosci 2017;11:322.
6. Marshall CR, Howrigan DP, Merico D, et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet 2017;49:27-35.
7. Palmer DS, Howrigan DP, Chapman SB, et al. Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nat Genet 2022;54:541-7.
8. Singh T, Kurki MI, Curtis D, et al. Swedish Schizophrenia Study; INTERVAL Study; DDD Study; UK10 K Consortium. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci 2016;19:571-7.
9. Singh T, Poterba T, Curtis D, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 2022;604:509-16.
10. Liu D, Meyer D, Fennessy B, et al. Psychiatric Genomics Consortium Phase 3 Targeted Sequencing of Schizophrenia Study Team. Schizophrenia risk conferred by rare protein-truncating variants is conserved across diverse human populations. Nat Genet 2023;55:369-76.
11. Curtis D. Clinical features of UK Biobank subjects carrying protein-truncating variants in genes implicated in schizophrenia pathogenesis. Psychiatr Genet 2022;32:156-61.
12. Herzog LE, Wang L, Yu E, et al. Mouse mutants in schizophrenia risk genes GRIN2A and AKAP11 show EEG abnormalities in common with schizophrenia patients. Transl Psychiatry 2023;13:92.
13. Mukai J, Cannavò E, Crabtree GW, et al. Recapitulation and reversal of schizophrenia-related phenotypes in setd1a-deficient mice. Neuron 2019;104:471-87.e12.
14. Chong ZS, Khong ZJ, Tay SH, Ng SY. Metabolic contributions to neuronal deficits caused by genomic disruption of schizophrenia risk gene SETD1A. Schizophrenia 2022;8:115.
16. Lee JH, Skalnik DG. Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol 2008;28:609-18.
17. Wang S, Bleeck A, Nadif Kasri N, Kleefstra T, van Rhijn JR, Schubert D. SETD1A mediated H3K4 methylation and its role in neurodevelopmental and neuropsychiatric disorders. Front Mol Neurosci 2021;14:772000.
18. Barresi S, Dentici ML, Manzoni F, et al. Infantile-onset syndromic cerebellar ataxia and CACNA1G mutations. Pediatr Neurol 2020;104:40-5.
19. Calcium channel, voltage-dependent, T type, alpha-1G subunit; CACNA1G. Available from: https://www.omim.org/entry/604065 [Last accessed on 4 Jan 2024].
20. Chemin J, Siquier-Pernet K, Nicouleau M, et al. De novo mutation screening in childhood-onset cerebellar atrophy identifies gain-of-function mutations in the CACNA1G calcium channel gene. Brain 2018;141:1998-2013.
21. Paul MS, Limaiem F. Histology, purkinje cells. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545154/ [Last accessed on 4 Jan 2024].
22. Huang YF, Zhang Z, Zhang M, et al. CUL1 promotes breast cancer metastasis through regulating EZH2-induced the autocrine expression of the cytokines CXCL8 and IL11. Cell Death Dis 2018;10:2.
23. Chen G, Li G. Increased Cul1 expression promotes melanoma cell proliferation through regulating p27 expression. Int J Oncol 2010;37:1339-44.
24. Michail O, Moris D, Theocharis S, Griniatsos J. Cullin-1 and -2 protein expression in colorectal cancer: correlation with clinicopathological variables. In Vivo 2018;32:391-6.
25. Zhou W, Wei W, Sun Y. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases. Cell Res 2013;23:599-619.
26. Bachiller S, Rybkina T, Porras-García E, et al. The HERC1 E3 ubiquitin ligase is essential for normal development and for neurotransmission at the mouse neuromuscular junction. Cell Mol Life Sci 2015;72:2961-71.
27. Yang Y, Zhou X, Liu X, Song R, Gao Y, Wang S. Implications of FBXW7 in neurodevelopment and neurodegeneration: molecular mechanisms and therapeutic potential. Front Cell Neurosci 2021;15:736008.
28. Davies B, Brown LA, Cais O, et al. WGS500 Consortium. A point mutation in the ion conduction pore of AMPA receptor GRIA3 causes dramatically perturbed sleep patterns as well as intellectual disability. Hum Mol Genet 2017;26:3869-82.
29. Sumi T, Harada K. Mechanism underlying hippocampal long-term potentiation and depression based on competition between endocytosis and exocytosis of AMPA receptors. Sci Rep 2020;10:14711.
30. Antunes FM, Rubio ME, Kandler K. Role of GluA3 AMPA receptor subunits in the presynaptic and postsynaptic maturation of synaptic transmission and plasticity of endbulb-bushy cell synapses in the cochlear nucleus. J Neurosci 2020;40:2471.
31. Park YH, Broyles HV, He S, McGrady NR, Li L, Yorio T. Involvement of AMPA receptor and its flip and flop isoforms in retinal ganglion cell death following oxygen/glucose deprivation. Invest Ophthalmol Vis Sci 2016;57:508-26.
32. Trivisano M, Santarone ME, Micalizzi A, et al. GRIA3 missense mutation is cause of an X-linked developmental and epileptic encephalopathy. Seizure 2020;82:1-6.
33. Myers SJ, Yuan H, Kang JQ, Tan FCK, Traynelis SF, Low CM. Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Res 2019;8:1940.
34. Nakazawa K, Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Ther 2020;205:107426.
35. Poltavskaya EG, Fedorenko OY, Kornetova EG, et al. Study of early onset schizophrenia: associations of GRIN2A and GRIN2B polymorphisms. Life 2021;11:997.
36. Garcia-Gonzalo FR, Bartrons R, Ventura F, Rosa JL. Requirement of phosphatidylinositol-4,5-bisphosphate for HERC1-mediated guanine nucleotide release from ARF proteins. FEBS Lett 2005;579:343-8.
37. Pedrazza L, Schneider T, Bartrons R, Ventura F, Rosa JL. The ubiquitin ligase HERC1 regulates cell migration via RAF-dependent regulation of MKK3/p38 signaling. Sci Rep 2020;10:824.
38. Pérez-Villegas EM, Pérez-Rodríguez M, Negrete-Díaz JV, et al. HERC1 ubiquitin ligase is required for hippocampal learning and memory. Front Neuroanat 2020;14:592797.
40. Wang C, Liang CC, Bian ZC, Zhu Y, Guan JL. FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 2013;16:532-42.
41. Ikebuchi K, Chano T, Ochi Y, et al. RB1CC1 activates the promoter and expression of RB1 in human cancer. Int J Cancer 2009;125:861-7.
42. Guo A, Lun P, Chen J, et al. Association analysis of risk genes identified by SCHEMA with schizophrenia in the Chinese Han population. Psychiatr Genet 2022;32:188-93.
43. Zhou X, Nie Z, Roberts A, et al. Reduced NMDAR1 expression in the Sp4 hypomorphic mouse may contribute to endophenotypes of human psychiatric disorders. Hum Mol Genet 2010;19:3797-805.
44. Zhang Q, Huo JH, Guo L, Wang L, Wang C, Li M. Common and rare variants within SP4 exert distinct molecular mechanisms contributing to the risk of schizophrenia. Psychiatry Res 2022;318:114948.
45. Zhou X, Tang W, Greenwood TA, et al. Transcription factor SP4 is a susceptibility gene for bipolar disorder. PLoS One 2009;4:e5196.
46. Wei C, Sun M, Sun X, et al. RhoGEF trio regulates radial migration of projection neurons via its distinct domains. Neurosci Bull 2022;38:249-62.
47. Tao T, Sun J, Peng Y, et al. Golgi-resident TRIO regulates membrane trafficking during neurite outgrowth. J Biol Chem 2019;294:10954-68.
48. Sadybekov A, Tian C, Arnesano C, Katritch V, Herring BE. An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio. Nat Commun 2017;8:601.
49. Herring BE, Nicoll RA. Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP. Proc Natl Acad Sci USA 2016;113:2264-9.
50. Ba W, Yan Y, Reijnders MR, et al. TRIO loss of function is associated with mild intellectual disability and affects dendritic branching and synapse function. Hum Mol Genet 2016;25:892-902.
51. Modepalli S, Martinez-Morilla S, Venkatesan S, et al. An in vivo model for elucidating the role of an erythroid-specific isoform of nuclear export protein exportin 7 (Xpo7) in murine erythropoiesis. Exp Hematol 2022;114:22-32.
52. Aksu M, Pleiner T, Karaca S, et al. Xpo7 is a broad-spectrum exportin and a nuclear import receptor. J Cell Biol 2018;217:2329-40.
53. Innes AJ, Sun B, Wagner V, et al. XPO7 is a tumor suppressor regulating p21(CIP1)-dependent senescence. Genes Dev 2021;35:379-91.
54. Deng Z, Li X, Blanca Ramirez M, et al. Selective autophagy of AKAP11 activates cAMP/PKA to fuel mitochondrial metabolism and tumor cell growth. Proc Natl Acad Sci USA 2021;118:e2020215118.
55. Veleanu M, Urrieta-Chávez B, Sigoillot SM, et al. Modified climbing fiber/Purkinje cell synaptic connectivity in the cerebellum of the neonatal phencyclidine model of schizophrenia. Proc Natl Acad Sci USA 2022;119:e2122544119.
56. Oka M, Ito K, Koga M, Kusumi I. Changes in subunit composition of NMDA receptors in animal models of schizophrenia by repeated administration of methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 2020;103:109984.
57. Farsi Z, Sheng M. Molecular mechanisms of schizophrenia: insights from human genetics. Curr Opin Neurobiol 2023;81:102731.
58. Peng SX, Pei J, Rinaldi B, et al. Dysfunction of AMPA receptor GluA3 is associated with aggressive behavior in human. Mol Psychiatry 2022;27:4092-102.
59. Chen R, Liu Y, Djekidel MN, et al. Cell type-specific mechanism of Setd1a heterozygosity in schizophrenia pathogenesis. Sci Adv 2022;8:1077.
60. Clifton NE, Bosworth ML, Haan N, et al. Developmental disruption to the cortical transcriptome and synaptosome in a model of SETD1A loss-of-function. Hum Mol Genet 2022;31:3095-106.
61. Nagahama K, Sakoori K, Watanabe T, et al. Setd1a insufficiency in mice attenuates excitatory synaptic function and recapitulates schizophrenia-related behavioral abnormalities. Cell Rep 2020;32:108126.
62. Gorelik M, Orlicky S, Sartori MA, et al. Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1-F-box interface. Proc Natl Acad Sci USA 2016;113:3527-32.
63. Pérez-Villegas EM, Negrete-Díaz JV, Porras-García ME, et al. Mutation of the HERC 1 ubiquitin ligase impairs associative learning in the lateral amygdala. Mol Neurobiol 2018;55:1157-68.
64. Singh N, Zeke A, Reményi A. Systematic discovery of FBXW7-binding phosphodegrons highlights mitogen-activated protein kinases as important regulators of intracellular protein levels. Int J Mol Sci 2022;23:3320.
65. Luza S, Opazo CM, Bousman CA, Pantelis C, Bush AI, Everall IP. The ubiquitin proteasome system and schizophrenia. Lancet Psychiatry 2020;7:528-37.