REFERENCES

1. Berk-Krauss J, Stein JA, Weber J, Polsky D, Geller AC. New systematic therapies and trends in cutaneous melanoma deaths among US whites, 1986-2016. Am J Public Health 2020;110:731-3.

2. National Cancer Institute. Drugs approved for melanoma. Available from: https://www.cancer.gov/about-cancer/treatment/drugs/melanoma [Last accessed on 16 Aug 2021].

3. Louie RJ, Perez MC, Jajja MR, et al. Real-world outcomes of talimogene laherparepvec therapy: a multi-institutional experience. J Am Coll Surg 2019;228:644-9.

4. Pointer DT Jr, Zager JS. Management of locoregionally advanced melanoma. Surg Clin North Am 2020;100:109-25.

5. Song X, Zhao Z, Barber B, Farr AM, Ivanov B, Novich M. Overall survival in patients with metastatic melanoma. Curr Med Res Opin 2015;31:987-91.

6. National Cancer Institute. SEER cancer stat facts: melanoma of the skin. Available from: https://seer.cancer.gov/statfacts/html/melan.html [Last accessed on 16 Aug 2021].

7. National Cancer Institute. Melanoma of the skin: recent trends in SEER relative survival rates, 2000-2018. Available from: https://seer.cancer.gov/explorer/application.html [Last accessed on 16 Aug 2021].

8. National Comprehensive Cancer Network. Melanoma: cutaneous (Version 2.2021). Available from: https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf [Last accessed on 16 Aug 2021].

9. Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015;33:2780-8.

10. Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves Anti-PD-1 immunotherapy. Cell 2018;174:1031-2.

11. Bommareddy PK, Aspromonte S, Zloza A, Rabkin SD, Kaufman HL. MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci Transl Med 2018;10:eaau0417.

12. Conry RM, Westbrook B, McKee S, Norwood TG. Talimogene laherparepvec: First in class oncolytic virotherapy. Hum Vaccin Immunother 2018;14:839-46.

13. Kohlhapp FJ, Kaufman HL. Molecular Pathways: Mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 2016;22:1048-54.

14. Liu BL, Robinson M, Han ZQ, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 2003;10:292-303.

15. Mohr I, Sternberg D, Ward S, Leib D, Mulvey M, Gluzman Y. A herpes simplex virus type 1 gamma34.5 second-site suppressor mutant that exhibits enhanced growth in cultured glioblastoma cells is severely attenuated in animals. J Virol 2001;75:5189-96.

16. Taneja S, MacGregor J, Markus S, Ha S, Mohr I. Enhanced antitumor efficacy of a herpes simplex virus mutant isolated by genetic selection in cancer cells. Proc Natl Acad Sci U S A 2001;98:8804-8.

17. Todo T, Martuza RL, Rabkin SD, Johnson PA. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci U S A 2001;98:6396-401.

18. He B, Chou J, Brandimarti R, Mohr I, Gluzman Y, Roizman B. Suppression of the phenotype of gamma(1)34.5- herpes simplex virus 1: failure of activated RNA-dependent protein kinase to shut off protein synthesis is associated with a deletion in the domain of the alpha47 gene. J Virol 1997;71:6049-54.

19. Mohr I, Gluzman Y. A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. Embo j 1996;15:4759-66.

20. Cassady KA, Gross M, Roizman B. The herpes simplex virus US11 protein effectively compensates for the gamma1(34.5) gene if present before activation of protein kinase R by precluding its phosphorylation and that of the alpha subunit of eukaryotic translation initiation factor 2. J Virol 1998;72:8620-6.

21. Toda M, Martuza RL, Rabkin SD. Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte-macrophage colony-stimulating factor. Mol Ther 2000;2:324-9.

22. Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 2010;17:718-30.

23. Hu JC, Coffin RS, Davis CJ, et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 2006;12:6737-47.

24. Harrington KJ, Hingorani M, Tanay MA, et al. Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin Cancer Res 2010;16:4005-15.

25. Senzer NN, Kaufman HL, Amatruda T, et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol 2009;27:5763-71.

26. Andtbacka RHI, Amatruda T, Nemunaitis J, et al. Biodistribution, shedding, and transmissibility of the oncolytic virus talimogene laherparepvec in patients with melanoma. EBioMedicine 2019;47:89-97.

27. Collichio F, Burke L, Proctor A, et al. Implementing a program of talimogene laherparepvec. Ann Surg Oncol 2018;25:1828-35.

28. Burke LMB, Yu H, Burke K, et al. Ultrasound-guided intralesional injection of talimogene laherparepvec (imlygic) for advanced melanoma: technical note on a preliminary experience. Cardiovasc Intervent Radiol 2021;44:801-6.

29. Andtbacka RHI, Collichio F, Harrington KJ, et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer 2019;7:145.

30. Andtbacka RH, Ross M, Puzanov I, et al. Patterns of clinical response with talimogene laherparepvec (T-VEC) in patients with melanoma treated in the OPTiM phase III clinical trial. Ann Surg Oncol 2016;23:4169-77.

31. U.S. Food and Drug Administration. IMLYGIC (talimogene laherparepvec). Available from: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/imlygic-talimogene-laherparepvec [Last accessed on 16 Aug 2021].

32. U.S. National Institutes of Health. Postmarketing prospective study of melanoma patients treated with IMLYGIC® to characterize risk of herpetic infection. Available from: https://clinicaltrials.gov/ct2/show/NCT02910557 [Last accessed on 16 Aug 2021].

33. Health USNIo. A registry study to evaluate the survival and long-term safety of subjects who previously received talimogene laherparepvec in Amgen or BioVEX-sponsored clinical trials. Available from: https://clinicaltrials.gov/ct2/show/NCT02173171 [Last accessed on 16 Aug 2021].

34. Puzanov I, Milhem MM, Minor D, et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol 2016;34:2619-26.

35. Chesney J, Puzanov I, Collichio F, et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol 2018;36:1658-67.

36. Puzanov I, Chesney J, Collichio F, et al. 433 Talimogene laherparepvec (T-VEC) in combination with ipilimumab (IPI) versus IPI alone for advanced melanoma: 4-year interim analysis of a randomized, open-label, phase 2 trial. J Immunother Cancer 2020;8:A459-A459.

37. Chesney J, Puzanov I, Collichio F, et al. Patterns of response with talimogene laherparepvec in combination with ipilimumab or ipilimumab alone in metastatic unresectable melanoma. Br J Cancer 2019;121:417-20.

38. Moesta AK, Cooke K, Piasecki J, et al. Local delivery of OncoVEXmGM-CSF generates systemic antitumor immune responses enhanced by cytotoxic T-lymphocyte-associated protein blockade. Clin Cancer Res 2017;23:6190-202.

39. Long G, Dummer R, Johnson D, et al. 429 Long-term analysis of MASTERKEY-265 phase 1b trial of talimogene laherparepvec (T-VEC) plus pembrolizumab in patients with unresectable stage IIIB-IVM1c melanoma. J Immunother Cancer 2020;8:A454.

40. U.S. National Institutes of Health. Pembrolizumab with or without talimogene laherparepvec or talimogene laherparepvec placebo in unresected melanoma (KEYNOTE-034). Available from: https://clinicaltrials.gov/ct2/show/NCT02263508 [Last accessed on 16 Aug 2021].

41. U.S. National Institutes of Health. Talimogene laherparepvec and pembrolizumab in treating patients with stage III-IV melanoma. Available from: https://clinicaltrials.gov/ct2/show/NCT02965716 [Last accessed on 16 Aug 2021].

42. U.S. National Institutes of Health. Talimogene laherparepvec with pembrolizumab in melanoma following progression on prior Anti-PD-1 based therapy (MASTERKEY-115) (Mk-3475-A07/KEYNOTE-A07). Available from: https://clinicaltrials.gov/ct2/show/NCT04068181 [Last accessed on 16 Aug 2021].

43. U.S. National Institutes of Health. Trial to evaluate the safety of talimogene laherparepvec injected into tumors alone and in combination with systemic pembrolizumab MK-3475-611/Keynote-611 (MASTERKEY-318). Available from: https://clinicaltrials.gov/ct2/show/NCT02509507 [Last accessed on 16 Aug 2021].

44. Sun L, Funchain P, Song JM, et al. Talimogene laherparepvec combined with anti-PD-1 based immunotherapy for unresectable stage III-IV melanoma: a case series. J Immunother Cancer 2018;6:36.

45. Behera TR, Song JM, Ko JS, Mcnamara MJ, Funchain P, Gastman B. Real-world experience of talimogene laherparepvec in patients receiving immunotherapy in metastatic melanoma. J Clin Oncol 2020;38:e22003.

46. Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med 2014;371:1877-88.

47. Kakadia S, Yarlagadda N, Awad R, et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther 2018;11:7095-107.

48. Gholami S, Chen CH, Gao S, et al. Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Ther 2014;21:283-9.

49. U.S. National Institutes of Health. Combining talimogene laherparepvec with BRAF and MEK inhibitors in BRAF mutated advanced melanoma. Available from: https://clinicaltrials.gov/ct2/show/NCT03088176 [Last accessed on 16 Aug 2021].

50. U.S. National Institutes of Health. Intratumoral injection of autologous CD1c (BDCA-1)+ myeloid dendritic cells plus talimogene laherparepvec (T-VEC) (myDCTV). Available from: https://clinicaltrials.gov/ct2/show/NCT03747744 [Last accessed on 16 Aug 2021].

51. Broz ML, Binnewies M, Boldajipour B, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 2014;26:638-52.

52. Roberts EW, Broz ML, Binnewies M, et al. Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of t cell immunity in melanoma. Cancer Cell 2016;30:324-36.

53. U.S. National Institutes of Health. TITAN (Tumoural Injection of T-VEC and Isolated Limb Perfusion) (TITAN). Available from: https://clinicaltrials.gov/ct2/show/NCT03555032 [Last accessed on 16 Aug 2021].

54. U.S. National Institutes of Health. A Study of T-VEC (Talimogene Laherparepvec) With or without radiotherapy for melanoma, merkel cell carcinoma, or other solid tumors. Available from: https://clinicaltrials.gov/ct2/show/NCT02819843 [Last accessed on 16 Aug 2021].

55. Kelly ZR, Gorantla VC, Davar D. The role of neoadjuvant therapy in melanoma. Curr Oncol Rep 2020;22:80.

56. Pelster MS, Amaria RN. Neoadjuvant Immunotherapy for Locally Advanced Melanoma. Curr Treat Options Oncol 2020;21:10.

57. U.S. National Institutes of Health. Neoadjuvant T-VEC in high risk early melanoma. Available from: https://clinicaltrials.gov/ct2/show/NCT04427306 [Last accessed on 16 Aug 2021].

58. U.S. National Institutes of Health. Efficacy and safety of talimogene laherparepvec neoadjuvant treatment plus surgery versus surgery alone for melanoma. Available from: https://clinicaltrials.gov/ct2/show/NCT02211131 [Last accessed on 16 Aug 2021].

59. Andtbacka RHI, Dummer R, Gyorki DE, et al. Interim analysis of a randomized, open-label phase 2 study of talimogene laherparepvec (T-VEC) neoadjuvant treatment (neotx) plus surgery (surgx) vs surgx for resectable stage IIIB-IVM1a melanoma (MEL). J Clin Oncol 2018;36:9508.

60. Dummer R, Gyorki DE, Hyngstrom JR, et al. One-year (yr) recurrence-free survival (RFS) from a randomized, open label phase II study of neoadjuvant (neo) talimogene laherparepvec (T-VEC) plus surgery (surgx) versus surgx for resectable stage IIIB-IVM1a melanoma (MEL). J Clin Oncol 2019;37:9520.

61. Dummer R, Gyorki D, Hyngstrom J, et al. Primary 2-year (yr) results of a phase II, multicenter, randomized, open-label trial of efficacy and safety for talimogene laherparepvec (T-VEC) neoadjuvant (neo) treatment (tx) plus surgery (surg) vs surg in patients (pts) with resectable stage IIIB-IVM1a melanoma. Ann Oncol 2019;30:v903.

62. Dummer R, Gyorki D, Hyngstrom J, et al. 432 3-year results of the phase 2 randomized trial for talimogene laherparepvec (T-VEC) neoadjuvant treatment plus surgery vs surgery in patients with resectable stage IIIB-IVM1a melanoma. J Immunother Cancer 2020;8:A458.

63. U.S. National Institutes of Health. Neo-adjuvant T-VEC + nivolumab combination therapy for resectable early metastatic (Stage IIIB/C/D-IV M1a) melanoma with injectable disease (NIVEC). Available from: https://clinicaltrials.gov/ct2/show/NCT04330430 [Last accessed on 16 Aug 2021].

64. U.S. National Institutes of Health. Neoadjuvant combination immunotherapy for stage III melanoma. Available from: https://clinicaltrials.gov/ct2/show/NCT03842943 [Last accessed on 16 Aug 2021].

65. U.S. National Institutes of Health. Ipilimumab with or without talimogene laherparepvec in unresected melanoma. Available from: https://clinicaltrials.gov/ct2/show/NCT01740297 [Last accessed on 16 Aug 2021].

66. Bradley S, Jakes AD, Harrington K, Pandha H, Melcher A, Errington-Mais F. Applications of coxsackievirus A21 in oncology. Oncolytic Virother 2014;3:47-55.

67. Hamid O, Ismail R, Puzanov I. Intratumoral immunotherapy-update 2019. Oncologist 2020;25:e423-38.

68. Eissa IR, Bustos-Villalobos I, Ichinose T, et al. The current status and future prospects of oncolytic viruses in clinical trials against melanoma, glioma, pancreatic, and breast cancers. Cancers (Basel) 2018;10:356.

69. U.S. National Institutes of Health. A clinical trial assessing BT-001 alone and in combination with pembrolizumab in metastatic or advanced solid tumors. Available from: https://clinicaltrials.gov/ct2/show/NCT04725331 [Last accessed on 16 Aug 2021].

70. Havunen R, Kalliokoski R, Siurala M, et al. Cytokine-coding oncolytic adenovirus TILT-123 is safe, selective, and effective as a single agent and in combination with immune checkpoint inhibitor Anti-PD-1. Cells 2021;10:246.

71. U.S. National Institutes of Health. A pilot study of sequential ONCOS-102, an engineered oncolytic adenovirus expressing GMCSF, and pembrolizumab in patients with advanced or unresectable melanoma progressing after programmed cell death protein 1 (PD1) blockade. Available from: https://clinicaltrials.gov/ct2/show/NCT03003676 [Last accessed on 16 Aug 2021].

72. Kuryk L, Møller AW, Jaderberg M. Combination of immunogenic oncolytic adenovirus ONCOS-102 with anti-PD-1 pembrolizumab exhibits synergistic antitumor effect in humanized A2058 melanoma huNOG mouse model. Oncoimmunology 2019;8:e1532763.

73. Kyo S, Takakura M, Fujiwara T, Inoue M. Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci 2008;99:1528-38.

74. U.S. National Institutes of Health. Evaluate efficacy, immunological response of intratumoral/intralesional oncolytic virus (OBP-301) in metastatic melanoma. Available from: https://clinicaltrials.gov/ct2/show/NCT03190824 [Last accessed on 16 Aug 2021].

75. Eissa IR, Naoe Y, Bustos-Villalobos I, et al. Genomic signature of the natural oncolytic herpes simplex virus HF10 and its therapeutic role in preclinical and clinical trials. Front Oncol 2017;7:149.

76. Haines BB, Denslow A, Grzesik P, et al. ONCR-177, an Oncolytic HSV-1 designed to potently activate systemic antitumor immunity. Cancer Immunol Res 2021;9:291-308.

77. Thomas S, Kuncheria L, Roulstone V, et al. Development of a new fusion-enhanced oncolytic immunotherapy platform based on herpes simplex virus type 1. J Immunother Cancer 2019;7:214.

78. Middleton MR, Aroldi F, Sacco J, et al. An open-label, single-arm, phase II clinical trial of RP1, an enhanced potency oncolytic herpes virus, combined with nivolumab in four solid tumor types: initial results from the skin cancer cohorts. J Clin Oncol 2020;38:e22050.

79. U.S. National Institutes of Health. OH2 Injection in Combination With HX008 for Melanoma. Available from: https://clinicaltrials.gov/ct2/show/NCT04616443 [Last accessed on 16 Aug 2021].

80. Zhao Q, Zhang W, Ning Z, et al. A novel oncolytic herpes simplex virus type 2 has potent anti-tumor activity. PLoS One 2014;9:e93103.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/