REFERENCES

1. Waddington CH. The epigenotype. Int J Epidemiol 1942;41:10-3.

2. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11.

3. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013;14:204-20.

4. Walsh CP, Xu GL. Cytosine methylation and DNA repair. Curr Top Microbiol Immunol 2006;301:283-315.

5. Medvedeva YA, Khamis AM, Kulakovskiy IV, Ba-Alawi W, Bhuyan MSI, et al. Effects of cytosine methylation on transcription factor binding sites. BMC genomics 2014;15:119.

6. Patil V, Ward RL, Hesson LB. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics 2014;9:823-8.

7. Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res 2013;23:555-67.

8. Shayevitch R, Askayo D, Keydar I, Ast G. The importance of DNA methylation of exons on alternative splicing. RNA 2018;24:1351-62.

9. Trivedi M, Deth R, Zhang Y, Abdolmaleky H. DNA methylation, hydroxymethylation and formylation in human frontal cortex of autistic and schizophrenic subjects. Faseb J 2017;31:468.3.

10. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381-95.

11. Bogliotti YS, Ross PJ. Mechanisms of histone H3 lysine 27 trimethylation remodeling during early mammalian development. Epigenetics 2012;7:976-81.

12. Liu X, Wang C, Liu W, Li J, Li C, et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 2016;537:558-62.

13. Miller JL, Grant PA. The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell Biochem 2013;61:289-317.

14. Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem 2009;78:273-304.

15. Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med 2017;49:e324.

16. Micucci JA, Sperry ED, Martin DM. Chromodomain helicase DNA-binding proteins in stem cells and human developmental diseases. Stem Cells Dev 2015;24:917-26.

17. Margueron R, Reinberg D. Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 2010;11:285-96.

18. Rudnizky S, Malik O, Bavly A, Pnueli L, Melamed P, et al. Nucleosome mobility and the regulation of gene expression: insights from single-molecule studies. Protein Sci 2017;26:1266-77.

19. Ehrenhofer-Murray AE. Chromatin dynamics at DNA replication, transcription and repair. Eur J Biochem 2004;271:2335-49.

20. Swygert SG, Peterson CL. Chromatin dynamics: interplay between remodeling enzymes and histone modifications. Biochim Biophys Acta - Gene Regul Mech 2014;1839:728-36.

21. Vignali M, Hassan AH, Neely KE, Workman JL. ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 2000;20:1899-910.

22. Tyagi M, Imam N, Verma K, Patel AK. Chromatin remodelers: We are the drivers!! Nucleus 2016;7:388-404.

23. Li W, Mills AA. Architects of the genome: CHD dysfunction in cancer, developmental disorders and neurological syndromes. Epigenomics 2014;6:381-95.

24. Eissenberg JC. Structural biology of the chromodomain: form and function. Gene 2012;496:69-78.

25. Hall JA, Georgel PT. CHD proteins: a diverse family with strong ties. Biochem Cell Biol 2007;85:463-76.

26. Delmas V, Stokes DG, Perry RP. A mammalian DNA-binding protein that contains a chromodomain and an SNF2/SWI2-like helicase domain. Proc Natl Acad Sci U S A 1993;90:2414-8.

27. Sanchez R, Zhou MM. The PHD finger: a versatile epigenome reader. Trends Biochem Sci 2011;36:364-72.

28. Xue Y, Wong J, Moreno GT, Young MK, Côté J, et al. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 1998;2:851-61.

29. Lamar KMJ, Carvill GL. Chromatin remodeling proteins in epilepsy: lessons from CHD2-associated epilepsy. Frontiers in Molecular Neuroscience 2018;11:208.

30. Zahir FR, Brown CJ. Epigenetic impacts on neurodevelopment: pathophysiological mechanisms and genetic modes of action. Pediatr Res 2011;69:92R-100.

31. van Loo KMJ, Martens GJM. Genetic and environmental factors in complex neurodevelopmental disorders. Curr Genomics 2007;8:429-44.

32. Chelly J, Khelfaoui M, Francis F, Chérif B, Bienvenu T. Genetics and pathophysiology of mental retardation. Eur J Hum Genet 2006;14:701-13.

33. Shashi V, McConkie-Rosell A, Rosell B, Schoch K, Vellore K, et al. The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med 2014;16:176-82.

34. Tucker T, Zahir FR, Griffith M, Delaney A, Chai D, et al. Single exon-resolution targeted chromosomal microarray analysis of known and candidate intellectual disability genes. Eur J Hum Genet 2014;22:792-800.

35. Zoghbi HY, Beaudet AL. Epigenetics and human disease. Cold Spring Harb Perspect Biol 2016;8:a019497.

36. Muñoz-Najar U, Sedivy JM. Epigenetic control of aging. Antioxid Redox Signal 2010;14:241-59.

37. Zahir FR, Langlois S, Gall K, Eydoux P, Marra MA, et al. A novel de novo 1.1 Mb duplication of 17q21.33 associated with cognitive impairment and other anomalies. Am J Med Genet Part A 2009;149A:1257-62.

38. Kordi-Tamandani DM, Sahranavard R, Torkamanzehi A. Analysis of association between dopamine receptor genes’ methylation and their expression profile with the risk of schizophrenia. Psychiatr Genet 2013;23:183-7.

39. Bastaki KN, Alwan S, Zahir FR. Maternal prenatal exposures in pregnancy and autism spectrum disorder: an insight into the epigenetics of drugs and diet as key environmental influences. Adv Neurobiol 2020;24:143-62.

40. Buss C, Entringer S, Swanson JM, Wadhwa PD. The role of stress in brain development: the gestational environment’s long-term effects on the brain. Cerebrum 2012;2012:4.

41. Kundakovic M, Jaric I. The epigenetic link between prenatal adverse environments and neurodevelopmental disorders. Genes (Basel) 2017;8:104.

42. Monk C, Spicer J, Champagne FA. Linking prenatal maternal adversity to developmental outcomes in infants: the role of epigenetic pathways. Dev Psychopathol 2012;24:1361-76.

43. Kim DR, Bale TL, Epperson CN. Prenatal programming of mental illness: current understanding of relationship and mechanisms. Curr Psychiatry Rep 2015;17:5.

44. Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 2011;31:363-73.

45. Breton-Larrivée M, Elder E, McGraw S. DNA methylation, environmental exposures and early embryo development. Anim Reprod 2019;16:465-74.

46. Dulac C. Brain function and chromatin plasticity. Nature 2010;465:728-35.

47. Hsieh J, Gage FH. Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol 2005;17:664-71.

48. Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 2006;75:243-69.

49. Kleefstra T, Kramer JM, Neveling K, Willemsen MH, Koemans TS, et al. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am J Hum Genet 2012;91:73-82.

50. Vissers LELM, Van Ravenswaaij CMA, Admiraal R, Hurst JA, De Vries BBA, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 2004;36:955-7.

51. Zahir F, Firth HV, Baross A, Delaney AD, Eydoux P, et al. Novel deletions of 14q11.2 associated with developmental delay, cognitive impairment and similar minor anomalies in three children. J Med Genet 2007;44:556-61.

52. Yasin H, Gibson WT, Langlois S, Stowe RM, Tsang ES, et al. A distinct neurodevelopmental syndrome with intellectual disability, autism spectrum disorder, characteristic facies, and macrocephaly is caused by defects in CHD8. J Hum Genet 2019;64:271-80.

53. Kleefstra T, Schenck A, Kramer JM, van Bokhoven H. The genetics of cognitive epigenetics. Neuropharmacology 2014;80:83-94.

54. Pilarowski GO, Vernon HJ, Applegate CD, Boukas L, Cho MT, et al. Missense variants in the chromatin remodeler CHD1 are associated with neurodevelopmental disability. J Med Genet 2018;55:561-6.

55. Snijders Blok L, Rousseau J, Twist J, Ehresmann S, Takaku M, et al. CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nat Commun 2018;9:4619.

56. Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Al Turki SH, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet 2016;48:1060-5.

57. Carvill G, Helbig I, Mefford H. CHD2-related neurodevelopmental disorders. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. Seattle: University of Washington; 2015.

58. Martin DM. Epigenetic developmental disorders: CHARGE syndrome, a case study. Curr Genet Med Rep 2015;3:1-7.

59. Hartshorne TS, Hefner MA, Davenport SLH. Behavior in CHARGE syndrome: Introduction to the special topic. Am J Med Genet Part A 2005;133A:228-31.

60. Pagon RA, Graham JMJ, Zonana J, Yong SL. Coloboma, congenital heart disease, and choanal atresia with multiple anomalies: CHARGE association. J Pediatr 1981;99:223-7.

61. Hota SK, Bruneau BG. ATP-dependent chromatin remodeling during mammalian development. Development 2016;143:2882-97.

62. Damaschke NA, Yang B, Blute ML, Lin CP, Huang W, et al. Frequent disruption of chromodomain helicase DNA-binding protein 8 (CHD8) and functionally associated chromatin regulators in prostate cancer. Neoplasia 2014;16:1018-27.

63. Sawada G, Ueo H, Matsumura T, Uchi R, Ishibashi M, et al. CHD8 is an independent prognostic indicator that regulates Wnt/β-catenin signaling and the cell cycle in gastric cancer. Oncol Rep 2013;30:1137-42.

64. Wade AA, Lim K, Catta-Preta R, Nord AS. Common CHD8 genomic targets contrast with model-specific transcriptional impacts of CHD8 haploinsufficiency. Front Mol Neurosci 2019;11:481.

65. Durak O, Gao F, Kaeser-Woo YJ, Rueda R, Martorell AJ, et al. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat Neurosci 2016;19:1477-88.

66. Gompers AL, Su-Feher L, Ellegood J, Copping NA, Riyadh MA, et al. Germline Chd8 haploinsufficiency alters brain development in mouse. Nat Neurosci 2017;20:1062-73.

67. Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, et al. CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature 2016;537:675-9.

68. Platt RJ, Zhou Y, Slaymaker IM, Shetty AS, Weisbach NR, et al. Chd8 mutation leads to autistic-like behaviors and impaired striatal circuits. Cell Rep 2017;19:335-50.

69. Suetterlin P, Hurley S, Mohan C, Riegman KLH, Pagani M, et al. Altered neocortical gene expression, brain overgrowth and functional over-connectivity in Chd8 haploinsufficient mice. Cereb Cortex 2018;28:2192-206.

70. Jung H, Park H, Choi Y, Kang H, Lee E, et al. Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice. Nat Neurosci 2018;21:1218-28.

71. Wong WR, Brugman KI, Maher S, Oh JY, Howe K, et al. Autism-associated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. Hum Mol Genet 2019;28:2271-81.

72. Gervais L, van den Beek M, Josserand M, Sallé J, Stefanutti M, et al. Stem cell proliferation is kept in check by the chromatin regulators Kismet/CHD7/CHD8 and Trr/MLL3/4. Dev Cell 2019;49:556-73.e6.

73. Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 2014;158:263-76.

74. Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad Sci 2014;111:E4468-77.

75. Wang P, Mokhtari R, Pedrosa E, Kirschenbaum M, Bayrak C, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 2017;8:1-17.

76. Wang P, Mokhtari R, Pedrosa E, Kirschenbaum M, Bayrak C, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 2015;8:1-18.

77. Wilkinson B, Grepo N, Thompson BL, Kim J, Wang K, et al. The autism-associated gene chromodomain helicase DNA-binding protein 8 (CHD8) regulates noncoding RNAs and autism-related genes. Transl Psychiatry 2015;5.

78. Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 2015;162:375-90.

79. Kita Y, Katayama Y, Shiraishi T, Oka T, Sato T, et al. The autism-related protein CHD8 cooperates with C/EBPβ to regulate adipogenesis. Cell Rep 2018;23:1988-2000.

80. Kawamura A, Katayama Y, Nishiyama M, Shoji H, Tokuoka K, et al. Oligodendrocyte dysfunction due to Chd8 mutation gives rise to behavioral deficits in mice. Hum Mol Genet 2020;29:1274-91.

81. Weiss K, Terhal PA, Cohen L, Bruccoleri M, Irving M, et al. De Novo Mutations in CHD4, an ATP-dependent chromatin remodeler gene, cause an intellectual disability syndrome with distinctive dysmorphisms. Am J Hum Genet 2016;99:934-41.

82. Bergman JE, Janssen N, Hoefsloot LH, Jongmans MC, Hofstra RM, et al. CHD7 mutations and CHARGE syndrome: the clinical implications of an expanding phenotype. J Med Genet 2011;48:334-42.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/