1. England MJ, Liverman CT, Schultz AM, Strawbridge LM. Summary: a reprint from epilepsy across the spectrum: promoting health and understanding. Epilepsy Curr 2012;12:245-53.

2. Epilepsy. 2019. Available from: [Last accessed on 9 Jun 2020].

3. Fisher RS, van Emde BW, Warren B, Christian E, Pierre G, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005;46:470-2.

4. Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med 2015;5:a022426.

5. Mormann F, Kreuz T, Andrzejak RG, David P, Lehnertz K, et al. Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res 2003;53:173-85.

6. Moller RS, Hammer TB, Rubboli G, Lemke JR, Johannesen KM, et al. From next-generation sequencing to targeted treatment of non-acquired epilepsies. Expert Rev Mol Diagn 2019;19:217-28.

7. Brunklaus A, Du J, Steckler F, Ghanty II, Johannesen KM, et al. Biological concepts in human sodium channel epilepsies and their relevance in clinical practice. Epilepsia 2020;61:387-99.

8. Wolff M, Johannesen KM, Hedrich UBS, Masnada S, Rubboli G, et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017;140:1316-36.

9. Moller RS, Larsen LHG, Johannesen KM, Talvik I, Talvik T, et al. Gene panel testing in epileptic encephalopathies and familial epilepsies. Mol Syndromol 2016;7:210-9.

10. Gardella E, Moller RS. Phenotypic and genetic spectrum of SCN8A-related disorders, treatment options, and outcomes. Epilepsia 2019;60:S77-85.

11. Kim JB. Channelopathies. Korean J Pediatr 2014;57:1-18.

12. Oyrer J, Maljevic S, Scheffer IE, Berkovic SF, Petrou S, et al. Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies. Pharmacol Rev 2018;70:142-73.

13. Milligan CJ, Li M, Gazina EV, Heron SE, Nair U, et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol 2014;75:581-90.

14. Masnada S, Hedrich UBS, Gardella E, Schubert J, Kaiwar C, et al. Clinical spectrum and genotype-phenotype associations of KCNA2-related encephalopathies. Brain 2017;140:2337-54.

15. Jiang X, Raju PK, D’Avanzo N, Lachance M, Pepin J, et al. Both gain-of-function and loss-of-function de novo CACNA1A mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennox-Gastaut syndrome. Epilepsia 2019;60:1881-94.

16. Strehlow V, Heyne HO, Vlaskamp DRW, Marwick FFM, Rudolf G, et al. GRIN2A-related disorders: genotype and functional consequence predict phenotype. Brain 2019;142:80-92.

17. Shao LR, Habela CW, Stafstrom CE. Pediatric epilepsy mechanisms: expanding the paradigm of excitation/inhibition imbalance. Children (Basel) 2019;6:23.

18. Marafiga JR, Pasquetti MV, Calcagnotto ME. GABAergic interneurons in epilepsy: more than a simple change in inhibition. Epilepsy Behav 2020;106935.

19. Perucca P, Mula M. Antiepileptic drug effects on mood and behavior: molecular targets. Epilepsy Behav 2013;26:440-9.

20. Wang J, Lin Z, Liu L, Xu HQ, Shi YW, et al. Epilepsy-associated genes. Seizure 2017;44:11-20.

21. Heyne HO, Singh T, Stamberger H, Jamra RA, Caglayan H, et al. De novo variants in neurodevelopmental disorders with epilepsy. Nat Genet 2018;50:1048-53.

22. Maljevic S, Reid CA, Petrou S. Models for discovery of targeted therapy in genetic epileptic encephalopathies. J Neurochem 2017;143:30-48.

23. Reid CA, Berkovic SF, Petrou S. Mechanisms of human inherited epilepsies. Prog Neurobiol 2009;87:41-57.

24. Bando Y, Grimm C, Cornejo VH, Yuste R. Genetic voltage indicators. BMC Biol 2019;17:71.

25. Barker BS, Ottolini M, Wagnon JL, Hollander RM, Meisler MH, et al. The SCN8A encephalopathy mutation p.Ile1327Val displays elevated sensitivity to the anticonvulsant phenytoin. Epilepsia 2016;57:1458-66.

26. Zeng SL, Sudlow LC, Berezin MY. Using Xenopus oocytes in neurological disease drug discovery. Expert Opinion on Drug Discovery 2020;15:39-52.

27. Quraishi IH, Stern S, Mangan KP, Zhang Y, Ali SR, et al. An epilepsy-associated KCNT1 mutation enhances excitability of human iPSC-derived neurons by increasing slack KNa currents. J Neurosci 2019;39:7438-49.

28. Grabole N, Zhang JD, Aigner S, Ruderisch N, Costa V, et al. Genomic analysis of the molecular neuropathology of tuberous sclerosis using a human stem cell model. Genome Med 2016;8:94.

29. Homan CC, Pederson S, To TH, Tan C, Piltz S, et al. PCDH19 regulation of neural progenitor cell differentiation suggests asynchrony of neurogenesis as a mechanism contributing to PCDH19 girls clustering epilepsy. Neurobiol Dis 2018;116:106-19.

30. Higurashi N, Uchida T, Lossin C, Misumi Y, Okada Y, et al. A human dravet syndrome model from patient induced pluripotent stem cells. Mol Brain 2013;6:19.

31. Liu Y, Lopez-Santiago LF, Yuan Y, Jones JM, Zhang H, et al. Dravet syndrome patient-derived neurons suggest a novel epilepsy mechanism. Ann Neurol 2013;74:128-39.

32. Stanurova J, Neureiter A, Hiber M, Kessler HO, Stolp K, et al. Angelman syndrome-derived neurons display late onset of paternal UBE3A silencing. Sci Rep 2016;6:30792.

33. Chamberlain SJ, Chen PF, Ng KY, Bourgois-Rocha F, Lemtiri-Chlieh F, et al. Induced pluripotent stem cell models of the genomic imprinting disorders angelman and prader-willi syndromes. Proc Natl Acad Sci USA 2010;107:17668-73.

34. Bayat A, Hjalgrim H, Møller RS. The incidence of SCN1A-related dravet syndrome in denmark is 1:22,000: a population-based study from 2004 to 2009. Epilepsia 2015;56:36-9.

35. Maeda H, Chiyonobu T, Yoshida M, Yamashita S, Zuiki M, et al. Establishment of isogenic iPSCs from an individual with SCN1A mutation mosaicism as a model for investigating neurocognitive impairment in dravet syndrome. J Hum Genet 2016;61:565-9.

36. Fan J, Thalody G, Kwagh J, Burnett E, Shi H, et al. Assessing seizure liability using multi-electrode arrays (MEA). Toxicol In Vitro 2019;55:93-100.

37. Liu J, Sternberg AR, Ghiasvand S, Berdichevsky Y. Epilepsy-on-a-chip system for antiepileptic drug discovery. IEEE Trans Biomed Eng 2019;66:1231-41.

38. Odawara A, Matsuda N, Ishibashi Y, Yokoi R, Suzuki I. Toxicological evaluation of convulsant and anticonvulsant drugs in human induced pluripotent stem cell-derived cortical neuronal networks using an MEA system. Sci Rep 2018;8:10416.

39. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76.

40. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72.

41. Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, et al. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 2009;5:434-41.

42. Luo S, Gu X, Ma F, Liu C, Shen Y, et al. ZYZ451 protects cardiomyocytes from hypoxia-induced apoptosis via enhancing MnSOD and STAT3 interaction. Free Radic Biol Med 2016;92:1-14.

43. Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mol Biol 2013;997:23-33.

44. Vlahos K, Sourris K, Mayberry R, McDonald P, Bruveris FF, et al. Generation of iPSC lines from peripheral blood mononuclear cells from 5 healthy adults. Stem Cell Res 2019;34:101380.

45. Kamath A, Ternes S, McGowan S, Moy AB. Virus-free and oncogene-free induced pluripotent stem cell reprogramming in cord blood and peripheral blood in patients with lung disease. Regen Med 2018;13:889-915.

46. Haase A, Gohring G, Martin U. Generation of non-transgenic iPS cells from human cord blood CD34(+) cells under animal component-free conditions. Stem Cell Res 2017;21:71-3.

47. Okumura T, Horie Y, Lai CY, Lin HT, Shoda H, et al. Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector. Stem Cell Res Ther 2019;10:185.

48. Simara P, Tesarova L, Rehakova D, Farkas S, Salingova B, et al. Reprogramming of adult peripheral blood cells into human induced pluripotent stem cells as a safe and accessible source of endothelial cells. Stem Cells Dev 2018;27:10-22.

49. Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 2010;7:20-4.

50. Merling RK, Sweeney CL, Choi U, Ravin SSD, Myers TG, et al. Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells. Blood 2013;121:e98-107.

51. Bang JS, Choi NY, Lee M, Ko K, Lee HJ, et al. Optimization of episomal reprogramming for generation of human induced pluripotent stem cells from fibroblasts. Anim Cells Syst (Seoul) 2018;22:132-9.

52. Lim SJ, Ho SC, Mok PL, Tan KL, Ong AHK, et al. Induced pluripotent stem cells from human hair follicle keratinocytes as a potential source for in vitro hair follicle cloning. Peer J 2016;4:e2695.

53. Matsumura W, Fujita Y, Nakayama C, Shinkuma S, Suzuki S, et al. Establishment of integration-free induced pluripotent stem cells from human recessive dystrophic epidermolysis bullosa keratinocytes. J Dermatol Sci 2018;89:263-71.

54. Kimura H, Ouchi T, Shibata S, Amemiya T, Nagoshi N, et al. Stem cells purified from human induced pluripotent stem cell-derived neural crest-like cells promote peripheral nerve regeneration. Sci Rep 2018;8:10071.

55. Shi L, Cui Y, Luan J, Zhou X, Han J. Urine-derived induced pluripotent stem cells as a modeling tool to study rare human diseases. Intractable Rare Dis Res 2016;5:192-201.

56. Gaignerie A, Lefort N, Rousselle M, Forest-Choquet V, Flippe L, et al. Urine-derived cells provide a readily accessible cell type for feeder-free mRNA reprogramming. Sci Rep 2018;8:14363.

57. Li Y, Nguyen HV, Tsang SH. Skin biopsy and patient-specific stem cell lines. Methods Mol Biol 2016;1353:77-88.

58. Klein T, Günther K, Kwok CK, Edenhofer F, Üçeyler N. Generation of the human induced pluripotent stem cell line (UKWNLi001-A) from skin fibroblasts of a woman with fabry disease carrying the X-chromosomal heterozygous c.708G>C (W236C) missense mutation in exon 5 of the alpha-galactosidase-A gene. Stem Cell Res 2018;31:222-6.

59. Karumbayaram S, Lee P, Azghadi SF, Cooper AR, Patterson M, et al. From skin biopsy to neurons through a pluripotent intermediate under good manufacturing practice protocols. Stem Cells Transl Med 2012;1:36-43.

60. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-21.

61. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014;346:1258096.

62. Zhang Y, Pak CH, Han Y, Ahlenius H, Zhang Z, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 2013;78:785-98.

63. Lee S, Lim W, Ryu HW, Jo D, Min JJ, et al. ZW800-1 for assessment of blood-brain barrier disruption in a photothrombotic stroke model. Int J Med Sci 2017;14:1430-5.

64. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009;27:275-80.

65. Watabe T, Miyazono K. Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res 2009;19:103-15.

66. Nadadhur AG, Melero JE, Meijer M, Schut D, Jacobs G, et al. Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells. PLoS One 2017;12:e0178533.

67. Simkin D, Kiskinis E. Modeling pediatric epilepsy through iPSC-based technologies. Epilepsy Curr 2018;18:240-5.

68. Tidball AM, Neely MD, Chamberlin R, Aboud AA, Kumar KK, et al. Genomic instability associated with p53 knockdown in the generation of huntington’s disease human induced pluripotent stem cells. PLoS One 2016;11:e0150372.

69. Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 2015;162:375-90.

70. Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, et al. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 2017;20:435-49.e4.

71. Birey F, Andersen J, Makinson CD, Islam S, Wei W, et al. Assembly of functionally integrated human forebrain spheroids. Nature 2017;545:54-9.

72. Sloan SA, Andersen J, Paşca AM, Birey F, Paşca SP. Generation and assembly of human brain region-specific three-dimensional cultures. Nat Protoc 2018;13:2062-85.

73. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, et al. Cerebral organoids model human brain development and microcephaly. Nature 2013;501:373-9.

74. Krefft O, Jabali A, Iefremova V, Koch P, Ladewig J. Generation of Standardized and Reproducible Forebrain-type cerebral organoids from human induced pluripotent stem cells. J Vis Exp 2018;131:56768.

75. Grebenyuk S, Ranga A. Engineering organoid vascularization. Front Bioeng Biotechnol 2019;7:39.

76. Sterlini B, Fruscione F, Baldassari S, Benfenati F, Zara F, et al. Progress of induced pluripotent stem cell technologies to understand genetic epilepsy. Int J Mol Sci 2020;21:482.

77. Simonato M, French JA, Galanopoulou AS, O’Brien TJ. Issues for new antiepilepsy drug development. Curr Opin Neurol 2013;26:195-200.

78. Zhang Y, Schmid B, Nikolaisen NK, Rasmussen MA, Aldana BI, et al. Patient iPSC-derived neurons for disease modeling of frontotemporal dementia with mutation in CHMP2B. Stem Cell Reports 2017;8:648-58.

79. Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 2012;7:1836-46.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us


All published articles are preserved here permanently:


All published articles are preserved here permanently: