REFERENCES

1. Kumar S, Reynolds K, Ji Y, Gu R, Rai S, et al. Impaired neurodevelopmental pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk. J NeurodevDisord 2019;11:10.

2. Woodbury-Smith M, Scherer SW. Progress in the genetics of autism spectrum disorder. Dev Med Child Neurol 2018;60:445-51.

3. Anagnostou E, Zwaigenbaum L, Szatmari P, Fombonne E, Fernandez BA, et al. Autism spectrum disorder: advances in evidence-based practice. CMAJ 2014;186:509-19.

4. Sener EF, Cikili Uytun M, Bayramov KK, Zararsiz G, Oztop DB, et al. The roles of CC2D1A and HTR1A gene expressions in autism spectrum disorders. Metab Brain Dis 2016;31:613-9.

5. Bölte S, Girdler S, Marschik PB. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci 2019;76:1275-97.

6. Bourgeron T. Current knowledge on the genetics of autism and propositions for future research. C R Biol 2016;339:300-7.

7. Bangerter A, Chatterjee M, Manyakov NV, Ness S, Lewin D, et al. Relationship between sleep and behavior in autism spectrum disorder: exploring the impact of sleep variability. Front Neurosci 2020;14:211.

8. Pagan C, Goubran-Botros H, Delorme R, Benabou M, Lemière N, et al. Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci Rep 2017;7:2096.

9. Rylaarsdam L, Guemez-Gamboa A. Genetic causes and modifiers of autism spectrum disorder. Front Cell Neurosci 2019;13:385.

10. Werling DM, Geschwind DH. Sex differences in autism spectrum disorders. Curr Opin Neurol 2013;26:146-53.

11. Nolen-Hoeksema S, Girgus JS. The emergence of gender differences in depression during adolescence. Psychol Bull 1994;115:424-43.

12. Rynkiewicz A, Łucka I. Autism spectrum disorder (ASD) in girls. Co-occurring psychopathology. Sex differences in clinical manifestation. Psychiat Pol 2018;52:629-39.

13. Mossa A, Manzini MC. Molecular causes of sex-specific deficits in rodent models of neurodevelopmental disorders. J Neurosci Res 2019; doi: 10.1002/jnr.24577.

14. Carmassi C, Palagini L, Caruso D, Masci I, Nobili L, et al. Systematic review of sleep disturbances and circadian sleep desynchronization in autism spectrum disorder: toward an integrative model of a self-reinforcing loop. Front Psychiatry 2019;10:366.

15. Sener EF, Canatan H, Ozkul Y. Recent advances in autism spectrum disorders: applications of whole exome sequencing technology. Psychiatry Investig 2016;13:255-64.

16. Zhang XC, Shu LQ, Zhao XS, Li XK. Autism spectrum disorders: autistic phenotypes and complicated mechanisms. World J Pediatr 2019;15:17-25.

17. Bernard Paulais MA, Mazetto C, Thiébaut E, Nassif MC, Costa Coelho De Souza MT, et al. Heterogeneities in cognitive and socio-emotional development in children with autism spectrum disorder and severe intellectual disability as a comorbidity. Front Psychiatry 2019;10:508.

18. Sener EF, Taheri S, Sahin MC, Korkmaz Bayramov K, Marasli MK, et al. Altered global mRNA expressions of pain and aggression related genes in the blood of children with autism spectrum disorders. J of Molecular Neuroscience 2019;67:89-96.

19. Ricciardi S, Boggio EM, Grosso S, Lonetti G, Forlani G, et al. Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. Hum Mol Genet 2011;20:1182-96.

20. Sciara AN, Beasley B, Crawford JD, Anderson EP, Carrasco T, et al. Neuroinflammatory gene expression alterations in anterior cingulate cortical white and gray matter of males with autism spectrum disorder. Autism Res 2020;13:870-84.

21. C Yuen RK, Merico D, Bookman M, L Howe J, Thiruvahindrapuram B, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci 2017;20:602-11.

22. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009;459:569-73.

23. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 1995;25:63-77.

24. Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol 2018;299:217-27.

25. Yin J, Schaaf CP. Autism genetics - an overview. Prenat Diagn 2017;37:14-30.

26. Bauman M, Kemper TL. Histoanatomic observations of the brain in early infantile autism. Neurology 1985;35:866-74.

27. Guerin P, Lyon G, Barthelemy C, Sostak E, Chevrollier V, et al. Neuropathological study of a case of autistic syndrome with severe mental retardation. Dev Med Child Neurol 1996;38:203-11.

28. Hutsler JJ, Love T, Zhang H. Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol Psychiatry 2007;61:449-57.

29. Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 2010;1309:83-94.

30. Bakos J, Bacova Z, Grant SG, Castejon AM, Ostatnikova D. Are molecules involved in neuritogenesis and axon guidance related to autism pathogenesis? Neuromolecular Med 2015;17:297-304.

31. Siniscalco D, Sapone A, Cirillo A. Autism spectrum disorders: is mesenchymal stem cell personalized therapy the future? J Biomed Biotechnol 2012;2012:480289.

32. Schuster S, Rivalan M, Strauss U. NOMA-GAP/ARHGAP33 regulates synapse development and autistic-like behavior in the mouse. Mol Psychiatry 2015;20:1120-31.

33. Levitt JG, Blanton RE, Smalley S. Cortical sulcal maps in autism. Cereb Cortex Jul 2003;13:728-35.

34. Scott JA, Schumann CM, Goodlin-Jones BL, Amaral DG. A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder. Autism Res 2009;2:246-57.

35. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014;15:81-94.

36. Costa L, Amaral C, Teixeira N, Correia-da-Silva G, Fonseca BM. Cannabinoid-induced autophagy: protective or death role? Prostaglandins Other Lipid Mediat 2016;122:54-63.

37. Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Molecular Cancer 2015;14:48.

38. Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011;18:571-80.

39. Yamamoto H, Fujioka Y, Suzuki SW, Noshiro D, Suzuki H, et al. The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev Cell 2016;38:86-99.

40. Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 2007;17:839-49.

41. Wu J, Dang Y, Su W, Liu C, Ma H, et al. Molecular cloning, and characterization of rat LC3A and LC3B-two novel markers of autophagosome. Biochem Biophys Res Commun 2006;339:437-42.

42. Nixon RA, Cataldo AM. Lysosomal system pathways: genes to neurodegeneration in Alzheimer’s disease. J Alzheimers Dis 2006;9:277-89.

43. Kim HJ, Cho MH, Shim WH. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry 2017;22:1576-84.

44. Lee KM, Hwang SK, Lee JA. Neuronal autophagy and neurodevelopmental disorders. Exp Neurobiol 2013;22:133-42.

45. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, et al. Loss of mTOR dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 2014;83:1131-43.

46. Zhang J, Zhang JX, Zhang QL. PI3K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder. Brain Res Bull 2016;125:152-8.

47. Bowling H, Klann E. Shaping dendritic spines in autism spectrum disorder: mTORC1-dependent macroautophagy. Neuron 2014;83:994-6.

48. Dana H, Bayram KK, Delibaşı N, Tahtasakal R, Bayram R, et al. Disregulation of Autophagy in the Transgenerational Cc2d1a Mouse Model of Autism. Neuromolecular Med 2020;22:239-49.

49. Huber KM, Klann E, Costa-Mattioli M. Dysregulation of mammalian target of rapamycin signaling in mouse models of autism. J Neurosci 2015;35:13836-42.

50. Arnett AB, Rhoads CL, Hoekzema K, Turner TN, Gerdts J, et al. The autism spectrum phenotype in ADNP syndrome. Autism Res 2018;11:1300-10.

51. Sragovich S, Ziv Y, Vaisvaser S, Shomron N, Hendler T, et al. The autism mutatedADNP plays a key role in stress response. Transl Psychiatry 2019;9:235.

52. Amram N, Hacohen Kleiman G, Sragovich S, Malishkevich A, Katz J, et al. Sexual divergence in microtubule function: the novel intranasal microtubule targeting SKIP normalizes axonal transport and enhances memory. Mol Psychiatry 2016;21:1467-76.

53. Sragovich S, Merenlender Wagner A, Gozes I. ADNP plays a key role in autophagy: from autism to schizophrenia and Alzheimer’s disease. Bioessays 2017;39.

54. Gozes I. ADNP regulates cognition: a multitasking protein. Front Neurosci 2018;12:873.

55. Malishkevich A, Amram N, Hacohen-Kleiman G, Magen I, Giladi E, et al. Activity dependent neuroprotective protein (ADNP) exhibits striking sexual dichotomy impacting on autistic and Alzheimer’s pathologies. Transl Psychiatry 2015;5:e501.

56. Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, et al. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol 2017;134:537-66.

57. De Rubeis S, Buxbaum JD. Recent advances in the genetics of autism spectrum disorder. Curr Neurol Neurosci Rep 2015;15:36.

58. Dudanova I, Tabuchi K, Rohlmann A, Südhof TC, Missler M. Deletion of alpha neurexins does not cause a major impairment of axonal pathfinding or synapse formation. J Comp Neurol 2007;502:261-74.

59. Hammer M, Krueger-Burg D, Tuffy LP, Cooper BH, Taschenberger H, et al. Perturbed hippocampal synaptic inhibition and γ-Oscillations in a Neuroligin-4 knockout mouse model of autism. Cell Rep 2015;13:516-23.

60. Chanda S, Aoto J, Lee SJ, Wernig M, Südhof TC. Pathogenic mechanism of an autism-associated neuroligin mutation involves altered AMPA-receptor trafficking. Mol Psychiatry 2016;21:169-77.

61. Duffney LJ, Zhong P, Wei J, Matas E, Cheng J, et al. Autism-like deficits in Shank3-deficient mice are rescued by targeting actin regulators. Cell Rep 2015;11:1400-13.

62. Goffin D, Allen M, Zhang L, Amorim M, Wang IT, et al. Rett syndrome mutation MeCP2T158A disrupts DNA binding, protein stability, and ERP responses. Nat Neurosci 2012;15:274-83.

63. Grossman AW, Aldridge GM, Lee KJ, Zeman MK, Jun CS, et al. Developmental characteristics of dendritic spines in the dentate gyrus of Fmr1 knockout mice. Brain Res 2010;1355:221-7.

64. Feliciano DM, Quon JL, Su T, Taylor MM, Bordey A. Postnatal neurogenesis generates heterotopias, olfactory micronodules, and cortical infiltration following single cell Tsc1 deletion. Hum Mol Genet 2012;21:799-810.

65. Durak O, Gao F, Kaeser-Woo YJ, Rueda R, Martorell AJ, et al. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat Neurosci 2016;19:1477-88.

66. Kearney JA, Plummer NW, Smith MR, Kapur J, Cummins TR, et al. A gain-of function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience 2001;102:307-17.

67. Aceti M, Creson TK, Vaissiere T, Rojas C, Huang WC, et al. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly. Biol Psychiatry 2015;77:805-15.

68. Ka M, Chopra DA, Dravid SM, Kim WY. Essential roles for ARID1B in dendritic arborization and spine morphology of developing pyramidal neurons. J Neurosci 2016;36:2723-42.

69. Maynard KR, Stein E. DSCAM contributes to dendrite arborization and spine formation in the developing cerebral cortex. J Neurosci 2012;32:16637-50.

70. Easton CR, Dickey CW, Moen SP, Neuzil KE, Barger Z, et al. Distinct calcium signals in developing cortical interneurons persist despite disorganization of cortex by Tbr1 KO. Dev Neurobiol 2016;76:705-20.

71. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009;20:1992-2003.

72. Russell RC, Tian Y, Yuan H, Park HW, Chang YY, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 2013;15:741-50.

73. Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012;11:709-30.

74. Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med 2013;19:983-97.

75. Shehata M, Matsumura H, Okubo-Suzuki R, Ohkawa N, Inokuchi K. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J Neurosci 2012;32:10413-22.

76. Yan J, Porch MW, Court-Vazquez B, Bennett MVL, Zukin RS. Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice. Proc Natl Acad Sci USA 2018;115:E9707-16.

77. Rosina E, Battan B, Siracusano M, Di Criscio L, Hollis F, et al. Disruption of mTOR and MAPK pathways correlates with severity in idiopathic autism. Transl Psychiatry 2019;9:50.

78. Curatolo P, Maria BL. Tuberous sclerosis. Handb Clin Neurol 2013;111:323-31.

79. Goorden SM, van Woerden GM, van der Weerd L, Cheadle JP, Elgersma Y. Cognitive deficits in Tsc1+/− mice in the absence of cerebral lesions and seizures. Ann Neurol 2007;62:648-55.

80. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, et al. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 2008;14:843-8.

81. Chevere-Torres I, Maki JM, Santini E, Klann E. Impaired social interactions, and motor learning skills in tuberous sclerosis complex model mice expressing a dominant/negative form of tuberin. Neurobiol Dis 2012;45:156-64.

82. Chen CJ, Sgritta M, Mays J, Zhou H, Lucero R, et al. Therapeutic inhibition of mTORC2 rescues the behavioral and neurophysiological abnormalities associated with Pten-deficiency. Nat Med 2019;25:1684-90.

83. Lieberman OJ, Cartocci V, Pigulevskiy I, Molinari M, Carbonell J, et al. mTOR suppresses macroautophagyduring striatal postnatal development and is hyperactive in mouse models of autism spectrum disorders. Front Cell Neurosci 2020;14:70.

84. Xing X, Zhang J, Wu K, Cao B, Li X, et al. Suppression of Akt-mTOR pathway rescued the social behavior in Cntnap2-deficient mice. Sci Rep 2019;9:3041.

85. Zhu JW, Zou MM, Li YF, Chen WJ, Liu JC, et al. Absence of TRIM32 leads to reduced GABAergic interneuron generation and autism-like behaviors in mice via suppressing mTOR signaling. Cereb Cortex 2020;30:3240-58.

86. Ornoy A, Weinstein-Fudim L, Ergaz Z. Prenatal factors associated with autism spectrum disorder (ASD). ReprodToxicol 2015;56:155-69.

87. Roullet FI, Lai JK, Foster JA. In utero exposure to valproic acid and autism--a current review of clinical and animal studies. Neurotoxicol Teratol 2013;36:47-56.

88. Schneider T, Przewłocki R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 2005;30:80-9.

89. Yang EJ, Ahn S, Lee K, Mahmood U, Kim HS. Early behavioral abnormalities and perinatal alterations of PTEN/AKT pathway in valproic acid autism model mice. PLoS One 2016;11:e0153298.

90. Kim JW, Seung H, Kim KC, Gonzales ELT, Oh HA, et al. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology 2017;113:71-81.

91. Sheikh AM, Li X, Wen G, Tauqeer Z, Brown WT, et al. Cathepsin D, and apoptosis related proteins are elevated in the brain of autistic subjects. Neuroscience 2010;165:363-70.

92. Tian Y, Yabuki Y, Moriguchi S, Fukunaga K, Mao PJ, et al. Melatonin reverses the decreases in hippocampal protein serine/threonine kinases observed in an animal model of autism. J Pineal Res 2014;56:1-11.

93. Bozdagi O, Tavassoli T, Buxbaum JD. Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. Mol Autism 2013;4:9.

94. van Echten-Deckert G, Hagen-Euteneuer N, Karaca I, Walter J. Sphingosine-1-phosphate: boon and bane for the brain. Cell Physiol Biochem 2014;34:148-57.

95. Jang S, Kim D, Lee Y, Moon S, Oh S. Modulation of sphingosine 1-phosphate and tyrosine hydroxylase in the stress-induced anxiety. Neurochem Res 2011;36:258-67.

96. Wu H, Zhang Q, Gao J, Sun C, Wang J, et al. Modulation of sphingosine 1-phosphate (S1P) attenuates spatial learning and memory impairments in the valproic acid rat model of autism. Psychopharmacology (Berl) 2018;235:873-86.

97. Zhang Y, Xiang Z, Jia Y, He X, Wang L, et al. The Notch signaling pathway inhibitor Dapt alleviates autism-like behavior, autophagy, and dendritic spine density abnormalities in a valproic acid-induced animal model of autism. Prog Neuropsychopharmacol Biol Psychiatry 2019;94:109644.

98. Al-Tawashi A, Jung SY, Liu D, Su B, Qin J. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity. J Biol Chem 2012;287:14644-58.

99. Manzini MC, Xiong L, Shaheen R, Tambunan DE, Costanzo SD, et al. CC2D1A regulates human intellectual and social function as well as NF-κB signaling homeostasis. Cell Rep 2014;8:647-55.

100. Zhao M, Raingo J, Chen ZJ, Kavalali ET. Cc2d1a, a C2 domain containing protein linked to nonsyndromic mental retardation, controls functional maturation of central synapses. J Neurophysiol 2011;105:1506-15.

101. Oaks AW, Zamarbide M, Tambunan DE, Santini E, Costanzo SD, et al. Cc2d1a loss of function disrupts functional and morphological development in forebrain neurons leading to cognitive and social deficits. Cereb Cortex 2017;27:1670-85.

102. Rogaeva A, Albert PR. The mental retardation gene CC2D1A/Freud-1 encodes a long isoform that binds conserved DNA elements to repress gene transcription. Eur J Neurosci 2007;26:965-74.

103. Vahid-Ansari F, Daigle M, Manzini MC, Tanaka KF, Hen R, et al. Abrogated freud-1/CC2D1A repression of 5-HT1Aautoreceptors induces fluoxetine-resistant anxiety/depression-like behavior. J Neurosci 2017;37:11967-78.

104. Basel-Vanagaite L, Attia R, Yahav M, Ferland RJ, Anteki L, et al. The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. J Med Genet 2006;43:203-10.

105. Al-Tawashi A, Gehring C. Phosphodiesterase activity is regulated by CC2D1A that is implicated in non-syndromic intellectual disability. Cell Commun Signal 2013;11:47.

106. Zamarbide M, Mossa A, Muñoz-Llancao P, Wilkinson MK, Pond HL, et al. Male specific cAMP signaling in the hippocampus controls spatial memory deficits in a mouse model of autism and intellectual disability. Biol Psychiatry 2019;85:760-8.

107. Möhrle D, Fernández M, Peñagarikano O, Frick A, Allman B, et al. What we can learn from a genetic rodent model about autism. NeurosciBiobehav Rev 2020;109:29-53.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/