1. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol 2015;16:45-56.

2. GINA. Global strategy for asthma management and prevention. Available from: [Last accessed on 27 Dec 2018].

3. Lötvall J, Ekerljung L, Rönmark EP, Wennergren G, Lindén A, et al. West Sweden asthma study: prevalence trends over the last 18 years argues no recent increase in asthma. Respir Res 2009;10:94.

4. Lundbäck B, Backman H, Lötvall J, Rönmark E. Is asthma prevalence still increasing? Expert Rev Respir Med 2016;10:39-51.

5. Rönmark E, Lundbäck B, Jönsson E, Jonsson AC, Lindström M, et al. Incidence of asthma in adults--report from the obstructive lung disease in Northern Sweden study. Allergy 1997;52:1071-8.

6. Mincheva R, Ekerljung L, Bossios A, Lundbäck B, Lötvall J. High prevalence of severe asthma in a large random population study. J Allergy Clin Immunol 2018;141:2256-64.

7. Lötvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 2011;127:355-60.

8. Wenzel S. Severe asthma: from characteristics to phenotypes to endotypes. Clin Exp Allergy 2012;42:650-8.

9. Alipoor SD, Adcock IM, Garssen J, Mortaz E, Varahram M, et al. The roles of miRNAs as potential biomarkers in lung diseases. Eur J Pharmacol 2016;791:395-404.

10. Ameis D, Khoshgoo N, Iwasiow BM, Snarr P, Keijzer R. MicroRNAs in lung development and disease. Paediatr Respir Rev 2017;22:38-43.

11. Booton R, Lindsay MA. Emerging role of MicroRNAs and long noncoding RNAs in respiratory disease. Chest 2014;146:193-204.

12. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016;1:15004.

13. Johansson K, Weidner J, Rådinger M. MicroRNAs in type 2 immunity. Cancer Lett 2018;425:116-24.

14. O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol 2012;30:295-312.

15. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97.

16. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014;15:509-24.

17. Bartel DP. Metazoan microRNAs. Cell 2018;173:20-51.

18. Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 2019;20:21-37.

19. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018;9:402.

20. Callari M, Tiberio P, De Cecco L, Cavadini E, Dugo M, et al. Feasibility of circulating miRNA microarray analysis from archival plasma samples. Anal Biochem 2013;437:123-5.

21. Ge Q, Zhou Y, Lu J, Bai Y, Xie X, et al. miRNA in plasma exosome is stable under different storage conditions. Molecules 2014;19:1568-75.

22. Grasedieck S, Sorrentino A, Langer C, Buske C, Döhner H, et al. Circulating microRNAs in hematological diseases: principles, challenges, and perspectives. Blood 2013;121:4977-84.

23. Mraz M, Malinova K, Mayer J, Pospisilova S. MicroRNA isolation and stability in stored RNA samples. Biochem Biophys Res Commun 2009;390:1-4.

24. Grasedieck S, Schöler N, Bommer M, Niess JH, Tumani H, et al. Impact of serum storage conditions on microRNA stability. Leukemia 2012;26:2414-6.

25. Lloyd CM. Building better mouse models of asthma. Curr Allergy Asthma Rep 2007;7:231-6.

26. Rosenberg HF, Druey KM. Modeling asthma: pitfalls, promises, and the road ahead. J Leukoc Biol 2018;104:41-8.

27. Brusselle GG, Kips JC, Tavernier JH, van der Heyden JG, Cuvelier CA, et al. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy 1994;24:73-80.

28. Johnson JR, Wiley RE, Fattouh R, Swirski FK, Gajewska BU, et al. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med 2004;169:378-85.

29. Wynn TA. Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol 2015;15:271-82.

30. Halim TY, Krauss RH, Sun AC, Takei F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 2012;36:451-63.

31. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 2010;463:540-4.

32. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010;464:1367-70.

33. Monticelli S, Ansel KM, Xiao C, Socci ND, Krichevsky AM, et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol 2005;6:R71.

34. Rossi RL, Rossetti G, Wenandy L, Curti S, Ripamonti A, et al. Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nat Immunol 2011;12:796-803.

35. Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, et al. Aberrant T cell differentiation in the absence of Dicer. J Exp Med 2005;202:261-9.

36. Cho S, Wu CJ, Yasuda T, Cruz LO, Khan AA, et al. miR-23~ 27~24 clusters control effector T cell differentiation and function. J Exp Med 2016;213:235-49.

37. Pua HH, Steiner DF, Patel S, Gonzalez JR, Ortiz-Carpena JF, et al. MicroRNAs 24 and 27 suppress allergic inflammation and target a network of regulators of T Helper 2 cell-associated cytokine production. Immunity 2016;44:821-32.

38. Okoye IS, Czieso S, Ktistaki E, Roderick K, Coomes SM, et al. Transcriptomics identified a critical role for Th2 cell-intrinsic miR-155 in mediating allergy and antihelminth immunity. Proc Natl Acad Sci U S A 2014;111:E3081-90.

39. Jiménez-Morales S, Gamboa-Becerra R, Baca V, Del Río-Navarro BE, López-Ley DY, et al. MiR-146a polymorphism is associated with asthma but not with systemic lupus erythematosus and juvenile rheumatoid arthritis in Mexican patients. Tissue Antigens 2012;80:317-21.

40. Polikepahad S, Knight JM, Naghavi AO, Oplt T, Creighton CJ, et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J Biol Chem 2010;285:30139-49.

41. Kumar M, Ahmad T, Sharma A, Mabalirajan U, Kulshreshtha A, et al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J Allergy Clin Immunol 2011;128:1077-85.

42. Vigorito E, Kohlhaas S, Lu D, Leyland R. miR-155: an ancient regulator of the immune system. Immunol Rev 2013;253:146-57.

43. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007;316:608-11.

44. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, et al. Regulation of the germinal center response by microRNA-155. Science 2007;316:604-8.

45. Johansson K, Malmhäll C, Ramos-Ramírez P, Rådinger M, et al. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. J Allergy Clin Immunol 2017;139:1007-16.

46. Malmhäll C, Alawieh S, Lu Y, Sjöstrand M, Bossios A, et al. MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J Allergy Clin Immunol 2014;133:1429-38.

47. Lu TX, Hartner J, Lim EJ, Fabry V, Mingler MK, et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 2011;187:3362-73.

48. Divekar R, Kita H. Recent advances in epithelium-derived cytokines (IL-33, IL-25, and thymic stromal lymphopoietin) and allergic inflammation. Curr Opin Allergy Clin Immunol 2015;15:98-103.

49. McKenzie ANJ, Spits H, Eberl G. Innate lymphoid cells in inflammation and immunity. Immunity 2014;41:366-74.

50. Christianson CA, Goplen NP, Zafar I, Irvin C, Good JT Jr, et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J Allergy Clin Immunol 2015;136:59-68.

51. Smith SG, Chen R, Kjarsgaard M, Huang C, Oliveria JP, et al. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J Allergy Clin Immunol 2016;137:75-86.

52. Singh PB, Pua HH, Happ HC, Schneider C, von Moltke J, et al. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation. J Exp Med 2017;214:3627-43.

53. Knolle MD, Chin SB, Rana BMJ, Englezakis A, Nakagawa R, et al. MicroRNA-155 protects group 2 innate lymphoid cells from apoptosis to promote Type-2 immunity. Front Immunol 2018;9:2232.

54. Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A 2009;106:18704-9.

55. Collison A, Mattes J, Plank M, Foster PS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol 2011;128:160-7.

56. Sharma A, Kumar M, Ahmad T, Mabalirajan U, Aich J, et al. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. J Appl Physiol (1985) 2012;113:459-64.

57. Li JJ, Tay HL, Maltby S, Xiang Y, Eyers F, et al. MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2A activity. J Allergy Clin Immunol 2015;136:462-73.

58. Kim RY, Horvat JC, Pinkerton JW, Starkey MR, Essilfie AT, et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J Allergy Clin Immunol 2017;139:519-32.

59. Kumar RK, Hitchins MP, Foster PS. Epigenetic changes in childhood asthma. Dis Model Mech 2009;2:549-53.

60. Lü J, Qian J, Chen F, Tang X, Li C, et al. Differential expression of components of the microRNA machinery during mouse organogenesis. Biochem Biophys Res Commun 2005;334:319-23.

61. Dong J, Jiang G, Asmann YW, Tomaszek S, Jen J, et al. MicroRNA networks in mouse lung organogenesis. PLoS One 2010;5:e10854.

62. Williams AE, Moschos SA, Perry MM, Barnes PJ, Lindsay MA. Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev Dyn 2007;236:572-80.

63. Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 2007;310:442-53.

64. Bhaskaran M, Wang Y, Zhang H, Weng T, Baviskar P, et al. MicroRNA-127 modulates fetal lung development. Physiol Genomics 2009;37:268-78.

65. Liu F, Qin HB, Xu B, Zhou H, Zhao DY. Profiling of miRNAs in pediatric asthma: upregulation of miRNA-221 and miRNA-485-3p. Mol Med Rep 2012;6:1178-82.

66. Jiang C, Yu H, Sun Q, Zhu W, Xu J, et al. Extracellular microRNA-21 and microRNA-26a increase in body fluids from rats with antigen induced pulmonary inflammation and children with recurrent wheezing. BMC Pulm Med 2016;16:50.

67. Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 2009;182:4994-5002.

68. Sawant DV, Yao W, Wright Z, Sawyers C, Tepper RS, et al. Serum MicroRNA-21 as a biomarker for allergic inflammatory disease in children. Microrna 2015;4:36-40.

69. Hammad Mahmoud Hammad R, Hamed DHED, Eldosoky MAER, Ahmad AAES, Osman HM, et al. Plasma microRNA-21, microRNA-146a and IL-13 expression in asthmatic children. Innate Immun 2018;24:171-9.

70. Papadopoulos NG, Arakawa H, Carlsen KH, Custovic A, Gern J, et al. International consensus on (ICON) pediatric asthma. Allergy 2012;67:976-97.

71. Dong X, Xu M, Ren Z, Gu J, Lu M, et al. Regulation of CBL and ESR1 expression by microRNA-223p, 513a-5p and 625-5p may impact the pathogenesis of dust mite-induced pediatric asthma. Int J Mol Med 2016;38:446-56.

72. Midyat L, Gulen F, Karaca E, Ozkinay F, Tanac R, et al. MicroRNA expression profiling in children with different asthma phenotypes. Pediatr Pulmonol 2016;51:582-7.

73. Nakano T, Inoue Y, Shimojo N, Yamaide F, Morita Y, et al. Lower levels of hsa-mir-15a, which decreases VEGFA, in the CD4+ T cells of pediatric patients with asthma. J Allergy Clin Immunol 2013;132:1224-7.

74. Lee CG, Link H, Baluk P, Homer RJ, Chapoval S, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med 2004;10:1095-103.

75. Asai K, Kanazawa H, Kamoi H, Shiraishi S, Hirata K, et al. Increased levels of vascular endothelial growth factor in induced sputum in asthmatic patients. Clin Exp Allergy 2003;33:595-9.

76. Hossny E, El-Awady H, Bakr S, Labib A. Vascular endothelial growth factor overexpression in induced sputum of children with bronchial asthma. Pediatr Allergy Immunol 2009;20:89-96.

77. Davis JS, Sun M, Kho AT, Moore KG, Sylvia JM, et al. Circulating microRNAs and association with methacholine PC20 in the childhood asthma management program (CAMP) cohort. PLoS One 2017;12:e0180329.

78. Kho AT, McGeachie MJ, Moore KG, Sylvia JM, Weiss ST, et al. Circulating microRNAs and prediction of asthma exacerbation in childhood asthma. Respir Res 2018;19:128.

79. Kho AT, Sharma S, Davis JS, Spina J, Howard D, et al. Circulating microRNAs: association with lung function in asthma. PLoS One 2016;11:e0157998.

80. Licari A, Castagnoli R, Brambilla I, Marseglia A, Tosca MA, et al. Asthma endotyping and biomarkers in childhood asthma. Pediatr Allergy Immunol Pulmonol 2018;31:44-55.

81. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 2012;18:716-25.

82. Pinkerton M, Chinchilli V, Banta E, Craig T, August A, et al. Differential expression of microRNAs in exhaled breath condensates of patients with asthma, patients with chronic obstructive pulmonary disease, and healthy adults. J Allergy Clin Immunol 2013;132:217-9.

83. Malmhäll C, Johansson K, Winkler C, Alawieh S, Ekerljung L, et al. Altered miR-155 expression in allergic asthmatic airways. Scand J Immunol 2017;85:300-7.

84. Suojalehto H, Lindström I, Majuri ML, Mitts C, Karjalainen J, et al. Altered microRNA expression of nasal mucosa in long-term asthma and allergic rhinitis. Int Arch Allergy Immunol 2014;163:168-78.

85. Fekonja S, Korošec P, Rijavec M, Jeseničnik T, Kunej T. Asthma microRNA regulome development using validated miRNA-target interaction visualization. OMICS 2018;22:607-15.

86. Simpson LJ, Patel S, Bhakta NR, Choy DF, Brightbill HD, et al. A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production. Nat Immunol 2014;15:1162-70.

87. Haj-Salem I, Fakhfakh R, Bérubé JC, Jacques E, Plante S, et al. MicroRNA-19a enhances proliferation of bronchial epithelial cells by targeting TGFbetaR2 gene in severe asthma. Allergy 2015;70:212-9.

88. Sun Q, Liu L, Wang H, Mandal J, Khan P, et al. Constitutive high expression of protein arginine methyltransferase 1 in asthmatic airway smooth muscle cells is caused by reduced microRNA-19a expression and leads to enhanced remodeling. J Allergy Clin Immunol 2017;140:510-24.

89. Chen L, Xu J, Chu X, Ju C. MicroRNA-98 interferes with thrombospondin 1 expression in peripheral B cells of patients with asthma. Biosci Rep 2017; doi: 10.1042/BSR20170149.

90. Cheng W, Yan K, Xie LY, Chen F, Yu HC, et al. MiR-143-3p controls TGF-β1-induced cell proliferation and extracellular matrix production in airway smooth muscle via negative regulation of the nuclear factor of activated T cells 1. Mol Immunol 2016;78:133-9.

91. Huo X, Zhang K, Yi L, Mo Y, Liang Y, et al. Decreased epithelial and plasma miR-181b-5p expression associates with airway eosinophilic inflammation in asthma. Clin Exp Allergy 2016;46:1281-90.

92. Panganiban RP, Wang Y, Howrylak J, Chinchilli VM, Craig TJ, et al. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J Allergy Clin Immunol 2016;137:1423-32.

93. Panganiban RP, Pinkerton MH, Maru SY, Jefferson SJ, Roff AN, et al. Differential microRNA epression in asthma and the role of miR-1248 in regulation of IL-5. Am J Clin Exp Immunol 2012;1:154-65.

94. Milger K, Götschke J, Krause L, Nathan P, Alessandrini F, et al. Identification of a plasma miRNA biomarker signature for allergic asthma: a translational approach. Allergy 2017;72:1962-71.

95. Levänen B, Bhakta NR, Torregrosa Paredes P, Barbeau R, Hiltbrunner S, et al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol 2013;131:894-903.

96. Tang X, Wu F, Fan J, Jin Y, Wang J, et al. Posttranscriptional regulation of interleukin-33 expression by microRNA-200 in bronchial asthma. Mol Ther 2018;26:1808-17.

97. Ray A, Kolls JK. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol 2017;38:942-54.

98. Maes T, Cobos FA, Schleich F, Sorbello V, Henket M, et al. Asthma inflammatory phenotypes show differential microRNA expression in sputum. J Allergy Clin Immunol 2016;137:1433-46.

99. Huang Y, Zhang S, Fang X, Qin L, Fan Y, et al. Plasma miR-199a-5p is increased in neutrophilic phenotype asthma patients and negatively correlated with pulmonary function. PLoS One 2018;13:e0193502.

100. Yuan Y, Ran N, Xiong L, Wang G, Guan X, et al. Obesity-related asthma: immune regulation and potential targeted therapies. J Immunol Res 2018;2018:1943497.

101. Rijavec M, Korošec P, Žavbi M, Kern I, Malovrh MM. Let-7a is differentially expressed in bronchial biopsies of patients with severe asthma. Sci Rep 2014;4:6103.

102. Rupani H, Martinez-Nunez RT, Dennison P, Lau LC, Jayasekera N, et al. Toll-like receptor 7 is reduced in severe asthma and linked to an altered microRNA profile. Am J Respir Crit Care Med 2016;194:26-37.

103. Tsitsiou E, Williams AE, Moschos SA, Patel K, Rossios C, et al. Transcriptome analysis shows activation of circulating CD8+ T cells in patients with severe asthma. J Allergy Clin Immunol 2012;129:95-103.

104. Comer BS, Camoretti-Mercado B, Kogut PC, Halayko AJ, Solway J, et al. MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2014;307:L727-34.

105. Perry MM, Baker JE, Gibeon DS, Adcock IM, Chung KF. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. Am J Respir Cell Mol Biol 2014;50:7-17.

106. Yin H, Zhang S, Sun Y, Li S, Ning Y, et al. MicroRNA-34/449 targets IGFBP-3 and attenuates airway remodeling by suppressing Nur77-mediated autophagy. Cell Death Dis 2017;8:e2998.

107. Solberg OD, Ostrin EJ, Love MI, Peng JC, Bhakta NR, et al. Airway epithelial miRNA expression is altered in asthma. Am J Respir Crit Care Med 2012;186:965-74.

108. Lacedonia D, Palladino GP, Foschino-Barbaro MP, Scioscia G, Carpagnano GE. Expression profiling of miRNA-145 and miRNA-338 in serum and sputum of patients with COPD, asthma, and asthma-COPD overlap syndrome phenotype. Int J Chron Obstruct Pulmon Dis 2017;12:1811-7.

109. Fan L, Wang X, Fan L, Chen Q, Zhang H, et al. MicroRNA-145 influences the balance of Th1/Th2 via regulating RUNX3 in asthma patients. Exp Lung Res 2016;42:417-24.

110. Kärner J, Wawrzyniak M, Tankov S, Runnel T, Aints A, et al. Increased microRNA-323-3p in IL-22/IL-17-producing T cells and asthma: a role in the regulation of the TGF-beta pathway and IL-22 production. Allergy 2017;72:55-65.

111. Jardim MJ, Dailey L, Silbajoris R, Diaz-Sanchez D. Distinct microRNA expression in human airway cells of asthmatic donors identifies a novel asthma-associated gene. Am J Respir Cell Mol Biol 2012;47:536-42.

112. Chen X, Ba Y, Ma L, Cai X, Yin Y, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008;18:997-1006.

113. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008;105:10513-8.

114. Zen K, Zhang CY. Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev 2012;32:326-48.

115. Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol 2013;31:577.

116. Ørum H. Locked nucleic acids as microRNA therapeutics. In: Lawrie CH, editor. MicroRNAs in medicine. John Wiley & Sons: Inc; 2013. pp. 663-72.

117. Rai K, Takigawa N, Ito S, Kashihara H, Ichihara E, et al. Liposomal delivery of MicroRNA-7-expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells. Mol Cancer Ther 2011;10:1720-7.

118. Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 2011;19:1116-22.

119. van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 2017;18:1386-96.

120. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 2015;43:W460-6.

121. Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 2016;44:D239-47.

122. Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 2018;46:D296-302.

123. Lee YJ, Kim V, Muth DC, Witwer KW. Validated microRNA target databases: an evaluation. Drug Dev Res 2015;76:389-96.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us


All published articles are preserved here permanently:


All published articles are preserved here permanently: