REFERENCES

1. Wu EQ, Shi L, Birnbaum H, Hudson T, Kessler R. Annual prevalence of diagnosed schizophrenia in the USA: a claims data analysis approach. Psychol Med 2006;36:1535-40.

2. Wu EQ, Birnbaum HG, Shi L, Ball DE, Kessler RC, et al. The economic burden of schizophrenia in the United States in 2002. J Clin Psychiatry 2005;66:1122-9.

3. Cloutier M, Aigbogun MS, Guerin A, Nitulescu R, Ramanakumar AV, et al. The economic burden of schizophrenia in the United States in 2013. J Clin Psychiatry 2016;77:764-71.

4. Schultz SH, North SW, Shields CG. Schizophrenia: a review. Am Fam Physician 2007;75:1821-9.

5. Millier A, Schmidt U, Angermeyer MC, Chauhan D, Murthy V, et al. Humanistic burden in schizophrenia: a literature review. J Psychiatr Res 2014;54:85-93.

6. Marsman A, van den Heuvel MP, Klomp DW, Kahn RS, Luijten PR, et al. Glutamate in schizophrenia: a focused review and meta-analysis of 1H-MRS studies. Schizophr Bull 2013;39:120-9.

7. Plitman E, Nakajima S, de la Fuente-Sandoval C, Gerretsen P, Chakravarty MM, et al. Glutamate-mediated excitotoxicity in schizophrenia: a review. Eur Neuropsychopharmacol 2014;24:1591-605.

8. Egerton A, Modinos G, Ferrera D, McGuire P. Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. Transl Psychiatry 2017;7:e1147.

9. Van Den Heuvel MP, Fornito A. Brain networks in schizophrenia. Neuropsychol Rev 2014;24:32-48.

10. Morgan C, Fisher H. Environment and schizophrenia: environmental factors in schizophrenia: childhood trauma - a critical review. Schizophr Bull 2007;33:3-10.

11. Cannon TD, Kaprio J, Lönnqvist J, Huttunen M, Koskenvuo M. The genetic epidemiology of schizophrenia in a Finnish twin cohort: a population-based modeling study. Arch Gen Psychiatry 1998;55:67-74.

12. Keller MC, Miller G. Resolving the paradox of common, harmful, heritable mental disorders: which evolutionary genetic models work best? Behav Brain Sci 2006;29:385-404.

13. Kim Y, Zerwas S, Trace SE, Sullivan PF. Schizophrenia genetics: where next? Schizophr Bull 2011;37:456-63.

14. International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009;460:748-52.

15. Chan MK, Cooper JD, Heilmann-Heimbach S, Frank J, Witt SH, et al. Associations between SNPs and immune-related circulating proteins in schizophrenia. Sci Rep 2017;7:12586.

16. Hawi Z, Tong J, Dark C, Yates H, Johnson B, et al. The role of cadherin genes in five major psychiatric disorders: a literature update. Am J Med Genet B Neuropsychiatr Genet 2018;177:168-80.

17. Morris JA. The genomic load of deleterious mutations: relevance to death in infancy and childhood. Front Immunol 2015;6:105.

18. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014;506:185-90.

19. Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 2009;19:212-9.

20. Van Dongen J, Boomsma DI. The evolutionary paradox and the missing heritability of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2013;162B:122-36.

21. Ripke S, Neale BM, Corvin A, Walters JT, Farh KH, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014;511:421-7.

22. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet 2012;13:135-45.

23. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005;6:95-108.

24. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet 2012;90:7-24.

25. Stranger BE, Stahl EA, Raj T. Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 2011;187:367-83.

26. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 2008;40:955-62.

27. Betcheva ET, Yosifova AG, Mushiroda T, Kubo M, Takahashi A, et al. Whole-genome-wide association study in the Bulgarian population reveals HHAT as schizophrenia susceptibility gene. Psychiatr Genet 2013;23:11-9.

28. Ren HY, Wang Q, Lei W, Zhang CC, Li YF, et al. The common variants implicated in microstructural abnormality of first episode and drug-naïve patients with schizophrenia. Sci Rep 2017;7:11750.

29. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011;43:969-76.

30. Mahmoudi E, Cairns MJ. MiR-137: an important player in neural development and neoplastic transformation. Mol Psychiatry 2017;22:44-55.

31. Liu C, Bousman CA, Pantelis C, Skafidas E, Zhang D, et al. Pathway-wide association study identifies five shared pathways associated with schizophrenia in three ancestral distinct populations. Transl Psychiatry 2017;7:e1037.

32. Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet 2018;19:491-504.

33. Mitchell KJ, Porteous DJ. Rethinking the genetic architecture of schizophrenia. Psychol Med 2011;41:19-32.

34. Farrell MS, Werge T, Sklar P, Owen MJ, Ophoff RA, et al. Evaluating historical candidate genes for schizophrenia. Mol Psychiatry 2015;20:555-62.

35. Klein C, Lohmann K, Ziegler A. The promise and limitations of genome-wide association studies. JAMA 2012;308:1867-8.

36. Altmüller J, Budde BS, Nürnberg P. Enrichment of target sequences for next-generation sequencing applications in research and diagnostics. Biol Chem 2014;395:231-7.

37. Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of next-generation sequencing technologies for the diagnosis of primary immunodeficiencies. Front Immunol 2017;8:847.

38. Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet 2018;19:269-85.

39. Kiezun A, Garimella K, Do R, Stitziel NO, Neale BM, et al. Exome sequencing and the genetic basis of complex traits. Nat Genet 2012;44:623-30.

40. Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet 2014;95:5-23.

41. Auer PL, Lettre G. Rare variant association studies: considerations, challenges and opportunities. Genome Med 2015;7:16.

42. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75.

43. Verma SS, Ritchie MD. Another round of “clue” to uncover the mystery of complex traits. Genes (Basel) 2018; doi: 10.3390/genes9020061.

44. Kao PY, Leung KH, Chan LW, Yip SP, Yap MK. Pathway analysis of complex diseases for GWAS, extending to consider rare variants, multi-omics and interactions. Biochim Biophys Acta Gen Subj 2017;1861:335-53.

45. Kaakinen M, Mägi R, Fischer K, Heikkinen J, Järvelin MR, et al. MARV: a tool for genome-wide multi-phenotype analysis of rare variants. BMC Bioinformatics 2017;18:110.

46. Morgenthaler S, Thilly WG. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res 2007;615:28-56.

47. Li B, Leal SM. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 2008;83:311-21.

48. Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, et al. Testing for an unusual distribution of rare variants. PLoS Genet 2011; doi: 10.1371/journal.pgen.1001322.

49. Wu MC, Lee S, Cai T, Li Y, Boehnke M, et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 2011;89:82-93.

50. Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet 2012;91:224-37.

51. Hasegawa T, Kojima K, Kawai Y, Misawa K, Mimori T, et al. AP-SKAT: highly-efficient genome-wide rare variant association test. BMC Genomics 2016;17:745.

52. Zhou JJ, Hu T, Qiao D, Cho MH, Zhou H. Boosting gene mapping power and efficiency with efficient exact variance component tests of single nucleotide polymorphism sets. Genetics 2016;204:921-31.

53. Chiu CY, Jung J, Wang Y, Weeks DE, Wilson AF, et al. A comparison study of multivariate fixed models and gene association with multiple traits (GAMuT) for next-generation sequencing. Genet Epidemiol 2017;41:18-34.

54. Chung RH, Tsai WY, Kang CY, Yao PJ, Tsai HJ, et al. FamPipe: an automatic analysis pipeline for analyzing sequencing data in families for disease studies. PLoS Comput Biol 2016; doi: 10.1371/journal.pcbi.1004980.

55. Jiang D, McPeek MS. Robust rare variant association testing for quantitative traits in samples with related individuals. Genet Epidemiol 2014;38:10-20.

56. Chen H, Meigs JB, Dupuis J. Sequence kernel association test for quantitative traits in family samples. Genet Epidemiol 2013;37:196-204.

57. Hu H, Roach JC, Coon H, Guthery SL, Voelkerding KV, et al. A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data. Nat Biotechnol 2014;32:663-9.

58. Wang X, Lee S, Zhu X, Redline S, Lin X. GEE-based SNP set association test for continuous and discrete traits in family-based association studies. Genet Epidemiol 2013;37:778-86.

59. Chen MH, Yang Q. RVFam: an R package for rare variant association analysis with family data. Bioinformatics 2016;32:624-6.

60. Wang X, Zhao X, Zhou J. Testing rare variants for hypertension using family-based tests with different weighting schemes. BMC Proc 2016;10:233-7.

61. Choi S, Lee S, Cichon S, Nöthen MM, Lange C, et al. FARVAT: a family-based rare variant association test. Bioinformatics 2014;30:3197-205.

62. Werling DM, Brand H, An JY, Stone MR, Zhu L, et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat Genet 2018;50:727-36.

63. Natsoulis G, Bell JM, Xu H, Buenrostro JD, Ordonez H, et al. A flexible approach for highly multiplexed candidate gene targeted resequencing. PLoS One 2011; doi: 10.1371/journal.pone.0021088.

64. Edwards TL, Song Z, Li C. Enriching targeted sequencing experiments for rare disease alleles. Bioinformatics 2011;27:2112-8.

65. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, et al. Schizophrenia and affective disorders--cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001;69:428-33.

66. Carless MA, Glahn DC, Johnson MP, Curran JE, Bozaoglu K, et al. Impact of DISC1 variation on neuroanatomical and neurocognitive phenotypes. Mol Psychiatry 2011;16:1096-104.

67. Bradshaw NJ, Porteous DJ. DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 2012;62:1230-41.

68. Johnstone M, Thomson PA, Hall J, McIntosh AM, Lawrie SM, et al. DISC1 in schizophrenia: genetic mouse models and human genomic imaging. Schizophr Bull 2011;37:14-20.

69. Thomson PA, Parla JS, McRae AF, Kramer M, Ramakrishnan K, et al. 708 common and 2010 rare DISC1 locus variants identified in 1542 subjects: analysis for association with psychiatric disorder and cognitive traits. Mol Psychiatry 2014;19:668-75.

70. Moens LN, De Rijk P, Reumers J, Van den Bossche MJ, Glassee W, et al. Sequencing of DISC1 pathway genes reveals increased burden of rare missense variants in schizophrenia patients from a northern Swedish population. PLoS One 2011;6:e23450.

71. Kenny EM, Cormican P, Furlong S, Heron E, Kenny G, et al. Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Mol Psychiatry 2014;19:872-9.

72. Teng S, Thomson PA, McCarthy S, Kramer M, Muller S, et al. Rare disruptive variants in the DISC1 interactome and regulome: association with cognitive ability and schizophrenia. Mol Psychiatry 2018;23:1270-7.

73. Xie P, Kranzler HR, Krystal JH, Farrer LA, Zhao H, et al. Deep resequencing of 17 glutamate system genes identifies rare variants in DISC1 and GRIN2B affecting risk of opioid dependence. Addict Biol 2014;19:955-64.

74. Kimura H, Tsuboi D, Wang C, Kushima I, Koide T, et al. Identification of rare, single-nucleotide mutations in NDE1 and their contributions to schizophrenia susceptibility. Schizophr Bull 2015;41:744-53.

75. Kimura H, Fujita Y, Kawabata T, Ishizuka K, Wang C, et al. A novel rare variant R292H in RTN4R affects growth cone formation and possibly contributes to schizophrenia susceptibility. Transl Psychiatry 2017; doi: 10.1038/tp.2017.170.

76. Dow DJ, Huxley-Jones J, Hall JM, Francks C, Maycox PR, et al. ADAMTSL3 as a candidate gene for schizophrenia: gene sequencing and ultra-high density association analysis by imputation. Schizophr Res 2011;127:28-34.

77. Forstner AJ, Basmanav FB, Mattheisen M, Böhmer AC, Hollegaard MV, et al. Investigation of the involvement of MIR185 and its target genes in the development of schizophrenia. J Psychiatry Neurosci 2014;39:386-96.

78. Piton A, Gauthier J, Hamdan FF, Lafrenière RG, Yang Y, et al. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiatry 2011;16:867-80.

79. Awadalla P, Gauthier J, Myers RA, Casals F, Hamdan FF, et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am J Hum Genet 2010;87:316-24.

80. Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A 2014;111:E455-64.

81. Singh T, Kurki MI, Curtis D, Purcell SM, Crooks L, et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci 2016;19:571-7.

82. Genovese G, Fromer M, Stahl EA, Ruderfer DM, Chambert K, et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci 2016;19:1433-41.

83. Giacopuzzi E, Gennarelli M, Minelli A, Gardella R, Valsecchi P, et al. Exome sequencing in schizophrenic patients with high levels of homozygosity identifies novel and extremely rare mutations in the GABA/glutamatergic pathways. PLoS One 2017;12:e0182778.

84. Ruderfer DM, Charney AW, Readhead B, Kidd BA, Kähler AK, et al. Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach. Lancet Psychiatry 2016;3:350-7.

85. Ganna A, Satterstrom FK, Zekavat SM, Das I, Kurki MI, et al. Quantifying the impact of rare and ultra-rare coding variation across the phenotypic spectrum. Am J Hum Genet 2018;102:1204-11.

86. Curtis D. Pathway analysis of whole exome sequence data provides further support for the involvement of histone modification in the aetiology of schizophrenia. Psychiatr Genet 2016;26:223-7.

87. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014;506:179-84.

88. Singh T, Walters JTR, Johnstone M, Curtis D, Suvisaari J, et al. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat Genet 2017;9:1167-73.

89. Trakadis YJ, Sardaar S, Chen A, Fulginiti V, Krishnan A. Machine learning in schizophrenia genomics, a case-control study using 5,090 exomes. Am J Med Genet Part B Neuropsychiatr Genet 2018; doi: 10.1002/ajmg.b.32638.

90. Bahlo M, Tankard R, Lukic V, Oliver KL, Smith KR. Using familial information for variant filtering in high-throughput sequencing studies. Hum Genet 2014;133:1331-41.

91. Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 2011;43:864-8.

92. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 2011;43:860-3.

93. Kranz TM, Harroch S, Manor O, Lichtenberg P, Friedlander Y, et al. De novo mutations from sporadic schizophrenia cases highlight important signaling genes in an independent sample. Schizophr Res 2015;166:119-24.

94. John J, Sharma A, Kukshal P, Bhatia T, Nimgaonkar VL, et al. Rare variants in tissue inhibitor of metalloproteinase 2 as a risk factor for schizophrenia: evidence from familial and cohort analysis. Schizophr Bull 2019;45:256-63.

95. John J, Kukshal P, Bhatia T, Chowdari KV, Nimgaonkar VL, et al. Possible role of rare variants in trace amine associated receptor 1 in schizophrenia. Schizophr Res 2017;189:190-5.

96. Egawa J, Hoya S, Watanabe Y, Nunokawa A, Shibuya M, et al. Rare UNC13B variations and risk of schizophrenia: whole-exome sequencing in a multiplex family and follow-up resequencing and a case-control study. Am J Med Genet B Neuropsychiatr Genet 2016;171:797-805.

97. Hoya S, Watanabe Y, Hishimoto A, Nunokawa A, Kaneko N, et al. Rare PDCD11 variations are not associated with risk of schizophrenia in Japan. Psychiatry Clin Neurosci 2017;71:780-8.

98. Chaumette B, Ferrafiat V, Ambalavanan A, Goldenberg A, Dionne-Laporte A, et al. Missense variants in ATP1A3 and FXYD gene family are associated with childhood-onset schizophrenia. Mol Psychiatry 2018; doi: 10.1038/s41380-018-0103-8.

99. O’Brien NL, Fiorentino A, Curtis D, Rayner C, Petrosellini C, et al. Rare variant analysis in multiply affected families, association studies and functional analysis suggest a role for the ITGΒ4 gene in schizophrenia and bipolar disorder. Schizophrenia Research 2018;199:181-8.

100. Salvoro C, Bortoluzzi S, Coppe A, Valle G, Feltrin E, et al. Rare risk variants identification by identity-by-descent mapping and whole-exome sequencing implicates neuronal development pathways in schizophrenia and bipolar disorder. Mol Neurobiol 2018;55:7366-76.

101. Timms AE, Dorschner MO, Wechsler J, Choi KY, Kirkwood R, et al. Support for the N-methyl-d-aspartate receptor hypofunction hypothesis of schizophrenia from exome sequencing in multiplex families. JAMA Psychiatry 2013;70:582-90.

102. Homann OR, Misura K, Lamas E, Sandrock RW, Nelson P, et al. Whole-genome sequencing in multiplex families with psychoses reveals mutations in the SHANK2 and SMARCA1 genes segregating with illness. Mol Psychiatry 2016;21:1690-5.

103. Zhou Z, Hu Z, Zhang L, Hu Z, Liu H, et al. Identification of RELN variation p.Thr3192Ser in a Chinese family with schizophrenia. Sci Rep 2016;6:24327.

104. Tang J, Fan Y, Li H, Xiang Q, Zhang DF, et al. Whole-genome sequencing of monozygotic twins discordant for schizophrenia indicates multiple genetic risk factors for schizophrenia. J Genet Genomics 2017;44:295-306.

105. Chung JH, Cai J, Suskin BG, Zhang Z, Coleman K, et al. Whole-genome sequencing and integrative genomic analysis approach on two 22q11.2 deletion syndrome family trios for genotype to phenotype correlations. Hum Mutat 2015;36:797-807.

106. Gur RE, Bassett AS, McDonald-Mcginn DM, Bearden CE, Chow E, et al. A neurogenetic model for the study of schizophrenia spectrum disorders: the International 22q11.2 Deletion Syndrome Brain Behavior Consortium. Mol Psychiatry 2017;22:1664-72.

107. Merico D, Zarrei M, Costain G, Ogura L, Alipanahi B, et al. Whole-genome sequencing suggests schizophrenia risk mechanisms in humans with 22q11.2 deletion syndrome. G3 (Bethesda) 2015;5:2453-61.

108. Khan FF, Melton PE, McCarthy NS, Morar B, Blangero J, et al. Whole genome sequencing of 91 multiplex schizophrenia families reveals increased burden of rare, exonic copy number variation in schizophrenia probands and genetic heterogeneity. Schizophr Res 2018; doi: 10.1016/j.schres.2018.02.034.

109. Sokolowski M, Wasserman J, Wasserman D. Rare CNVs in suicide attempt include schizophrenia-associated loci and neurodevelopmental genes: a pilot genome-wide and family-based study. PLoS One 2016; doi: 10.1371/journal.pone.0168531.

110. Piluso G, Monteleone P, Galderisi S, Giugliano T, Bertolino A, et al. Assessment of de novo copy-number variations in Italian patients with schizophrenia: detection of putative mutations involving regulatory enhancer elements. World J Biol Psychiatry 2017;20:1-11.

111. Ruderfer DM, Fanous AH, Ripke S, McQuillin A, Amdur RL, et al. Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol Psychiatry 2014;19:1017-24.

112. Bigdeli TB, Bacanu SA, Webb BT, Walsh D, O’Neill FA, et al. Molecular validation of the schizophrenia spectrum. Schizophr Bull 2014;40:60-5.

113. Meyer U, Schwarz MJ, Müller N. Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther 2011;132:96-110.

114. Cheung C, Yu K, Fung G, Leung M, Wong C, et al. Autistic disorders and schizophrenia: related or remote? An anatomical likelihood estimation. PLoS One 2010;5:e12233.

115. Rowland LM, Pradhan S, Korenic S, Wijtenburg SA, Hong LE, et al. Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy study. Transl Psychiatry 2016;6:e967.

116. Fryer SL, Roach BJ, Ford JM, Turner JA, van Erp TG, et al. Relating intrinsic low-frequency BOLD cortical oscillations to cognition in schizophrenia. Neuropsychopharmacology 2015;40:2705-14.

117. Takata A, Ionita-Laza I, Gogos JA, Xu B, Karayiorgou M. De novo synonymous mutations in regulatory elements contribute to the genetic etiology of autism and schizophrenia. Neuron 2016;89:940-7.

118. Kirov G. CNVs in neuropsychiatric disorders. Hum Mol Genet 2015;24:R45-9.

119. Xing J, Kimura H, Wang C, Ishizuka K, Kushima I, et al. Resequencing and association analysis of six PSD-95-related genes as possible susceptibility genes for schizophrenia and autism spectrum disorders. Sci Rep 2016;6:27491.

120. Kasem E, Kurihara T, Tabuchi K. Neurexins and neuropsychiatric disorders. Neurosci Res 2018;127:53-60.

121. Khanzada NS, Butler MG, Manzardo AM. GeneAnalytics pathway analysis and genetic overlap among autism spectrum disorder, bipolar disorder and schizophrenia. Int J Mol Sci 2017; doi: 10.3390/ijms18030527.

122. Schmidt RJ, Tancredi DJ, Ozonoff S, Hansen RL, Hartiala J, et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Am J Clin Nutr 2012;96:80-9.

123. Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun 2012;26:607-16.

124. Morris JA. Schizophrenia, bacterial toxins and the genetics of redundancy. Med hypotheses 1996;46:362-6.

125. Meyer U, Schwendener S, Feldon J, Yee BK. Prenatal and postnatal maternal contributions in the infection model of schizophrenia. Exp Brain Res 2006;173:243-57.

126. van der Ven E, Selten JP. Migrant and ethnic minority status as risk indicators for schizophrenia: new findings. Curr Opin Psychiatry 2018;31:231-6.

127. Egerton A, Howes OD, Houle S, McKenzie K, Valmaggia LR, et al. Elevated striatal dopamine function in immigrants and their children: a risk mechanism for psychosis. Schizophr Bull 2017;43:293-301.

128. Ohi K, Shimada T, Yasuyama T, Uehara T, Kawasaki Y. Variability of 128 schizophrenia-associated gene variants across distinct ethnic populations. Transl Psychiatry 2017; doi: 10.1038/tp.2016.260.

129. Eack SM, Bahorik AL, Newhill CE, Neighbors HW, Davis LE. Interviewer-perceived honesty as a mediator of racial disparities in the diagnosis of schizophrenia. Psychiatr Serv 2012;63:875-80.

130. Pinto R, Ashworth M, Jones R. Schizophrenia in black caribbeans living in the UK: an exploration of underlying causes of the high incidence rate. Br J Gen Pract 2008;58:429-34.

131. Hamilton JE, Heads AM, Meyer TD, Desai PV, Okusaga OO, et al. Ethnic differences in the diagnosis of schizophrenia and mood disorders during admission to an academic safety-net psychiatric hospital. Psychiatry Res 2018;267:160-7.

132. Vassos E, Di Forti M, Coleman J, Iyegbe C, Prata D, et al. An examination of polygenic score risk prediction in individuals with first-episode psychosis. Biol Psychiatry 2017;81:470-7.

133. Olde Loohuis LM, Mangul S, Ori APS, Jospin G, Koslicki D, et al. Transcriptome analysis in whole blood reveals increased microbial diversity in schizophrenia. Transl Psychiatry 2018;8:96.

134. Sanders AR, Drigalenko EI, Duan J, Moy W, Freda J, et al. Transcriptome sequencing study implicates immune-related genes differentially expressed in schizophrenia: new data and a meta-analysis. Transl Psychiatry 2017; doi: 10.1038/tp.2017.47.

135. Chestkov IV1, Jestkova EM2, Ershova ES1, Golimbet VE3, Lezheiko TV, et al. Abundance of ribosomal RNA gene copies in the genomes of schizophrenia patients. Schizophr Res 2018; doi: 10.1016/j.schres.2018.01.001.

136. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011;473:221-5.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/