REFERENCES

1. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet 2017;389:1238-52.

2. Benjamin O, Lappin SL. End-stage renal disease. Treasure Island (FL): StatPearls Publishing; 2018.

3. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89-95.

4. Urbschat A, Obermuller N, Haferkamp A. Biomarkers of kidney injury. Biomarkers 2011;16 Suppl 1:S22-30.

5. Wuttke M, Köttgen A. Insights into kidney diseases from genome-wide association studies. Nat Rev Nephrol 2016;12:549-62.

6. Schena FP. Biomarkers and personalized therapy in chronic kidney diseases. Expert Opin Investig Drugs 2014;23:1051-4.

7. Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med 2010;363:301-4.

8. Aronson SJ, Rehm HL. Building the foundation for genomics in precision medicine. Nature 2015;526:336-42.

9. Salzberg SL. Open questions: how many genes do we have? BMC Biol 2018;16:94.

10. Venter JC, Smith HO, Adams MD. The sequence of the human genome. Clin Chem 2015;61:1207-8.

11. Hansen TF, Jakobsen A. Clinical implications of genetic variations in the VEGF system in relation to colorectal cancer. Pharmacogenomics 2011;12:1681-93.

12. Chakravarti A. To a future of genetic medicine. Nature 2001;409:822-3.

13. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005;308:385-9.

14. Nordfors L, Luttropp K, Carrero JJ, Witasp A, Stenvinkel P, et al. Genetic studies in chronic kidney disease: basic concepts. J Nephrol 2012;25:141-9.

15. Gross O, Kashtan CE, Rheault MN, Flinter F, Savige J, et al. Advances and unmet needs in genetic, basic and clinical science in Alport syndrome: report from the 2015 International Workshop on Alport Syndrome. Nephrol Dial Transplant 2017;32:916-24.

16. Kashtan CE, Ding J, Garosi G, Heidet L, Massella L, et al. Alport syndrome: a unified classification of genetic disorders of collagen IV α345: a position paper of the Alport Syndrome Classification Working Group. Kidney Int 2018;93:1045-51.

17. Watson S, Bush JS. Alport syndrome. Treasure Island (FL): StatPearls Publishing; 2018.

18. Savige J, Gregory M, Gross O, Kashtan C, Ding J, et al. Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy. J Am Soc Nephrol 2013;24:364-75.

19. Cervera-Acedo C, Coloma A, Huarte-Loza E, Sierra-Carpio M, Domínguez-Garrido E. Phenotype variability in a large Spanish family with Alport syndrome associated with novel mutations in COL4A3 gene. BMC Nephrol 2017;18:325.

20. Fu XJ, Nozu K, Eguchi A, Nozu Y, Morisada N, et al. X-linked Alport syndrome associated with a synonymous p.Gly292Gly mutation alters the splicing donor site of the type IV collagen alpha chain 5 gene. Clin Exp Nephrol 2016;20:699-702.

21. Liu JH, Wei XX, Li A, Cui YX, Xia XY, et al. Novel mutations in COL4A3, COL4A4, and COL4A5 in Chinese patients with Alport Syndrome. PLoS One 2017;12:e0177685.

22. Weber S, Strasser K, Rath S, Kittke A, Beicht S, et al. Identification of 47 novel mutations in patients with Alport syndrome and thin basement membrane nephropathy. Pediatr Nephrol 2016;31:941-55.

23. Guo L, Li D, Dong S, Wan D, Yang B, et al. Mutation analysis of COL4A3 and COL4A4 genes in a Chinese autosomal-dominant Alport syndrome family. J Genet 2017;96:389-92.

24. Savige J, Rana K, Tonna S, Buzza M, Dagher H, et al. Thin basement membrane nephropathy. Kidney Int 2003;64:1169-78.

25. Tryggvason K, Patrakka J. Thin basement membrane nephropathy. J Am Soc Nephrol 2006;17:813-22.

26. Hou P, Chen Y, Ding J, Li G, Zhang H. A novel mutation of COL4A3 presents a different contribution to Alport syndrome and thin basement membrane nephropathy. Am J Nephrol 2007;27:538-44.

27. Xu Y, Guo M, Dong H, Jiang W, Ma R, et al. A novel COL4A4 mutation identified in a Chinese family with thin basement membrane nephropathy. Sci Rep 2016;6:20244.

28. Baek JI, Choi SJ, Park SH, Choi JY, Kim CD, et al. Identification of novel variants in the COL4A4 gene in Korean patients with thin basement membrane nephropathy. Indian J Med Res 2009;129:525-33.

29. Gale DP, Oygar DD, Lin F, Oygar PD, Khan N, et al. A novel COL4A1 frameshift mutation in familial kidney disease: the importance of the C-terminal NC1 domain of type IV collagen. Nephrol Dial Transplant 2016;31:1908-14.

30. Sha YK, Sha YW, Mei LB, Huang XJ, Wang X, et al. Use of targeted sequence capture and high-throughput sequencing identifies a novel PKD1 mutation involved in adult polycystic kidney disease. Gene 2017;634:1-4.

31. Harris PC, Rossetti S. Molecular diagnostics for autosomal dominant polycystic kidney disease. Nat Rev Nephrol 2010;6:197-206.

32. Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer CM, et al. Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet 2016;98:1193-1207.

33. Cornec-Le Gall E, Torres VE, Harris PC. Genetic complexity of autosomal dominant polycystic kidney and liver diseases. J Am Soc Nephrol 2018;29:13-23.

34. Song X, Haghighi A, Iliuta IA, Pei Y. Molecular diagnosis of autosomal dominant polycystic kidney disease. Expert Rev Mol Diagn 2017;17:885-95.

35. Wang Z, Wang Y, Xiong J. A new PKD1 mutation discovered in a Chinese family with autosomal polycystic kidney disease. Kidney Blood Press Res 2014;39:1-8.

36. Stanescu HC, Arcos-Burgos M, Medlar A, Bockenhauer D, Kottgen A, et al. Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med 2011;364:616-26.

37. Lv J, Hou W, Zhou X, Liu G, Zhou F, et al. Interaction between PLA2R1 and HLA-DQA1 variants associates with anti-PLA2R antibodies and membranous nephropathy. J Am Soc Nephrol 2013;24:1323-9.

38. Sekula P, Li Y, Stanescu HC, Wuttke M, Ekici AB, et al. Genetic risk variants for membranous nephropathy: extension of and association with other chronic kidney disease aetiologies. Nephrol Dial Transplant 2017;32:325-32.

39. Le WB, Shi JS, Zhang T, Liu L, Qin HZ, et al. HLA-DRB1*15:01 and HLA-DRB3*02:02 in PLA2R-related membranous nephropathy. J Am Soc Nephrol 2017;28:1642-50.

40. Bullich G, Ballarín J, Oliver A, Ayasreh N, Silva I, et al. HLA-DQA1 and PLA2R1 polymorphisms and risk of idiopathic membranous nephropathy. Clin J Am Soc Nephrol 2014;9:335-43.

41. Kanigicherla D, Gummadova J, McKenzie EA, Roberts SA, Harris S, et al. Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy. Kidney Int 2013;83:940-8.

42. Ronco P, Debiec H. Membranous nephropathy: a fairy tale for immunopathologists, nephrologists and patients. Mol Immunol 2015;68:57-62.

43. Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet 2012;8:e1002765.

44. Kiryluk K, Novak J. The genetics and immunobiology of IgA nephropathy. J Clin Invest 2014;124:2325-32.

45. Kiryluk K, Novak J, Gharavi AG. Pathogenesis of immunoglobulin A nephropathy: recent insight from genetic studies. Annu Rev Med 2013;64:339-56.

46. Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 2014;46:1187-96.

47. Li M, Foo JN, Wang JQ, Low HQ, Tang XQ, et al. Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat Commun 2015;6:7270.

48. Nie R, Cheng G, Zhang J, Dong Y, Wang C, et al. The association of rs1047763 and rs1008898 of C1GALT1 with IgA nephropathy risk: a global meta-analysis. Monoclon Antib Immunodiagn Immunother 2017;36:95-103.

49. Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 2011;43:321-7.

50. Jullien P, Laurent B, Claisse G, Masson I, Dinic M, et al. Deletion variants of CFHR1 and CFHR3 associate with mesangial immune deposits but not with progression of IgA nephropathy. J Am Soc Nephrol 2018;29:661-9.

51. Zhai YL, Meng SJ, Zhu L, Shi SF, Wang SX, et al. Rare variants in the complement factor H-related protein 5 gene contribute to genetic susceptibility to IgA nephropathy. J Am Soc Nephrol 2016;27:2894-905.

52. Qi YY, Zhou XJ, Cheng FJ, Hou P, Zhu L, et al. DEFA gene variants associated with IgA nephropathy in a Chinese population. Genes Immun 2015;16:231-7.

53. Feehally J, Farrall M, Boland A, Gale DP, Gut I, et al. HLA has strongest association with IgA nephropathy in genome-wide analysis. J Am Soc Nephrol 2010;21:1791-7.

54. Milillo A, La Carpia F, Costanzi S, D’Urbano V, Martini M, et al. A SPRY2 mutation leading to MAPK/ERK pathway inhibition is associated with an autosomal dominant form of IgA nephropathy. Eur J Hum Genet 2015;23:1673-8.

55. Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP, et al. Galactosylation of IgA1 is associated with common variation in C1GALT1. J Am Soc Nephrol 2017;28:2158-66.

56. Zhong Z, Feng SZ, Xu RC, Li ZJ, Huang FX, et al. Association of TNFSF13 polymorphisms with IgA nephropathy in a Chinese Han population. J Gene Med 2017; doi: 10.1002/jgm.2966.

57. Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A, et al. Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol 2015;26:1503-12.

58. Cox SN, Pesce F, El-Sayed Moustafa JS, Sallustio F, Serino G, et al. Multiple rare genetic variants co-segregating with familial IgA nephropathy all act within a single immune-related network. J Intern Med 2017;281:189-205.

59. Xue JL, Eggers PW, Agodoa LY, Foley RN, Collins AJ. Longitudinal study of racial and ethnic differences in developing end-stage renal disease among aged medicare beneficiaries. J Am Soc Nephrol 2007;18:1299-306.

60. Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 2008;40:1175-84.

61. Tzur S, Rosset S, Shemer R, Yudkovsky G, Selig S, et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum Genet 2010;128:345-50.

62. Limou S, Nelson GW, Kopp JB, Winkler CA. APOL1 kidney risk alleles: population genetics and disease associations. Adv Chronic Kidney Dis 2014;21:426-33.

63. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 2010;329:841-5.

64. Limou S, Dummer PD, Nelson GW, Kopp JB, Winkler CA. APOL1 toxin, innate immunity, and kidney injury. Kidney Int 2015;88:28-34.

65. Parsa A, Kao WH, Xie D, Astor BC, Li M, et al. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med 2013;369:2183-96.

66. Larsen CP, Beggs ML, Saeed M, Walker PD. Apolipoprotein L1 risk variants associate with systemic lupus erythematosus-associated collapsing glomerulopathy. J Am Soc Nephrol 2013;24:722-5.

67. Lipkowitz MS, Freedman BI, Langefeld CD, Comeau ME, Bowden DW, et al. Apolipoprotein L1 gene variants associate with hypertension-attributed nephropathy and the rate of kidney function decline in African Americans. Kidney Int 2013;83:114-20.

68. Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G, et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 2011;22:2129-37.

69. Papeta N, Kiryluk K, Patel A, Sterken R, Kacak N, et al. APOL1 variants increase risk for FSGS and HIVAN but not IgA nephropathy. J Am Soc Nephrol 2011;22:1991-6.

70. Freedman BI, Pastan SO, Israni AK, Schladt D, Julian BA, et al. APOL1 genotype and kidney transplantation outcomes from deceased African American donors. Transplantation 2016;100:194-202.

71. Lee BT, Kumar V, Williams TA, Abdi R, Bernhardy A, et al. The APOL1 genotype of African American kidney transplant recipients does not impact 5-year allograft survival. Am J Transplant 2012;12:1924-8.

72. Chandraker A. The real world impact of APOL1 variants on kidney transplantation. Transplantation 2016;100:16-7.

73. Cooper ME. Diabetes: treating diabetic nephropathy-still an unresolved issue. Nat Rev Endocrinol 2012;8:515-6.

74. Sandholm N Van Zuydam N, Ahlqvist E, Juliusdottir T, Deshmukh HA, et al. The genetic landscape of renal complications in type 1 diabetes. J Am Soc Nephrol 2017;28:557-74.

75. Teumer A, Tin A, Sorice R, Gorski M, Yeo NC, et al. Genome-wide association studies identify genetic loci associated with albuminuria in diabetes. Diabetes 2016;65:803-17.

76. Pezzolesi MG, Poznik GD, Skupien J, Smiles AM, Mychaleckyj JC, et al. An intergenic region on chromosome 13q33.3 is associated with the susceptibility to kidney disease in type 1 and 2 diabetes. Kidney Int 2011;80:105-11.

77. Sandholm N, McKnight AJ, Salem RM, Brennan EP, Forsblom C, et al. Chromosome 2q31.1 associates with ESRD in women with type 1 diabetes. J Am Soc Nephrol 2013;24:1537-43.

78. Iyengar SK, Sedor JR, Freedman BI, Kao WH, Kretzler M, et al. Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: family investigation of nephropathy and diabetes (FIND). PLoS Genet 2015;11:e1005352.

79. Li Q, Li C, Li H, Zeng L, Kang Z, et al. Effect of AMP-activated protein kinase subunit alpha 2 (PRKAA2) genetic polymorphisms on susceptibility to type 2 diabetes mellitus and diabetic nephropathy in a Chinese population. J Diabetes 2018;10:43-9.

80. Limou S, Vince N, Parsa A. Lessons from CKD-related genetic association studies-moving forward. Clin J Am Soc Nephrol 2018;13:140-52.

81. Joyner MJ, Paneth N. Seven questions for personalized medicine. JAMA 2015;314:999-1000.

82. Witasp A, Nordfors L, Carrero JJ, Luttropp K, Lindholm B, et al. Genetic studies in chronic kidney disease: interpretation and clinical applicability. J Nephrol 2012;25:851-64.

83. Zheng M, Lv LL, Ni J, Ni HF, Li Q, et al. Urinary podocyte-associated mRNA profile in various stages of diabetic nephropathy. PLoS One 2011;6:e20431.

84. Cao YH, Lv LL, Zhang X, Hu H, Ding LH, et al. Urinary vimentin mRNA as a potential novel biomarker of renal fibrosis. Am J Physiol Renal Physiol 2015;309:F514-22.

85. Zhou LT, Cao YH, Lv LL, Ma KL, Chen PS, et al. Feature selection and classification of urinary mRNA microarray data by iterative random forest to diagnose renal fibrosis: a two-stage study. Sci Rep 2017;7:39832.

86. Breit M, Weinberger KM. Metabolic biomarkers for chronic kidney disease. Arch Biochem Biophys 2016;589:62-80.

87. Hocher B, Adamski J. Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol 2017;13:269-84.

88. Lyu LL, Feng Y, Liu BC. Urinary biomarkers for chronic kidney disease with a focus on gene transcript. Chin Med J (Engl) 2017;130:2251-6.

89. Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012;148:1293-307.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/