REFERENCES

1. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, et al. How long for epilepsy remission in the ILAE definition? Epilepsia 2017;58:1486-7.

2. Striano P, Zara F. Mutations in mTOR pathway linked to megalencephaly syndromes. Nat Rev Neurol 2012;8:542-4.

3. Duncan JS, Sander JW, Sisodiya SM, Walker MC. Adult epilepsy. Lancet 2006;367:1087-100.

4. Guerrini R. Epilepsy in children. Lancet 2006;367:499-524.

5. Perucca E, Tomson T. The pharmacological treatment of epilepsy in adults. Lancet Neurol 2011;10:446-56.

6. Striano P, Vari MS, Mazzocchetti C, Verrotti A, Zara F. Management of genetic epilepsies: from empirical treatment to precision medicine. Pharmacol Res 2016;107:426-9.

7. Iori V, Aronica E, Vezzani A. Epigenetic control of epileptogenesis by miR-146a. Oncotarget 2017;8:45040-1.

8. EpiPM Consortium. A roadmap for precision medicine in the epilepsies. Lancet Neurol 2015;14:1219-28.

9. Browne TR, Holmes GL. Handbook of Epilepsy. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2008.

10. Löscher W, Klotz U, Zimprich F, Schmidt D. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 2009;50:1-23.

11. Walker LE, Mirza N, Yip VLM, Marson AG, Pirmohamed M. Personalized medicine approaches in epilepsy. J Intern Med 2015;277:218-34.

12. Lopez-Garcia MA, Feria-Romero IA, Fernando-Serrano H, Escalante-Santiago D, Grijalva I, et al. Genetic polymorphisms associated with antiepileptic metabolism. Front Biosci (Elite Ed) 2014;6:377-86.

13. Caudle KE, Rettie AE, Whirl-Carrillo M, Smith LH, Mintzer S, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin Pharmacol Ther 2014;96:542-8.

14. Depondt C, Godard P, Espel RS, Da Cruz AL, Lienard P, et al. A candidate gene study of antiepileptic drug tolerability and efficacy identifies an association of CYP2C9 variants with phenytoin toxicity. Eur J Neurol 2011;18:1159-64.

15. Franco V, Perucca E. CYP2C9 polymorphisms and phenytoin metabolism: implications for adverse effects. Expert Opin Drug Metab Toxicol 2015;11:1269-79.

16. Goto S, Seo T, Murata T, Nakada N, Ueda N, et al. Population estimation of the effects of cytochrome P450 2C9 and 2C19 polymorphisms on phenobarbital clearance in Japanese. Ther Drug Monit 2007;29:118-21.

17. Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, et al. Antiepileptic drugs--best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE commission on therapeutic strategies. Epilepsia 2008;49:1239-76.

18. Okada Y, Seo T, Ishitsu T, Wanibuchi A, Hashimoto N, et al. Population estimation regarding the effects of cytochrome P450 2C19 and 3A5 polymorphisms on zonisamide clearance. Ther Drug Monit 2008;30:540-3.

19. Sadeque AJ, Fisher MB, Korzekwa KR, Gonzalez FJ, Rettie AE. Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid. J Pharmacol Exp Ther 1997;283:698-703.

20. Bűdi T, Tóth K, Nagy A, Szever Z, Kiss Á, et al. Clinical significance of CYP2C9-status guided valproic acid therapy in children. Epilepsia 2015;56:849-55.

21. Wang C, Wang P, Yang LP, Pan J, Yang X, et al. Association of CYP2C9, CYP2A6, ACSM2A, and CPT1A gene polymorphisms with adverse effects of valproic acid in Chinese patients with epilepsy. Epilepsy Res 2017;132:64-9.

22. Inoue K, Suzuki E, Yazawa R, Yamamoto Y, Takahashi T, et al. Influence of uridine diphosphate glucuronosyltransferase 2B7-161C > T polymorphism on the concentration of valproic acid in pediatric epilepsy patients. Ther Drug Monit 2014;36:406-9.

23. Posner J, Cohen AF, Land G, Winton C, Peck AW. The pharmacokinetics of lamotrigine (BW430C) in healthy subjects with unconjugated hyperbilirubinaemia (Gilbert’s syndrome). Br J Clin Pharmacol 1989;28:117-20.

24. Wang Q, Liang M, Dong Y, Yun W, Qiu F, et al. Effects of UGT1A4 genetic polymorphisms on serum lamotrigine concentrations in Chinese children with epilepsy. Drug Metab Pharmacokinet 2015;30:209-13.

25. Chang Y, Yang LY, Zhang MC, Liu SY. Correlation of the UGT1A4 gene polymorphism with serum concentration and therapeutic efficacy of lamotrigine in Han Chinese of Northern China. Eur J Clin Pharmacol 2014;70:941-6.

26. Hermann R, Borlak J, Munzel U, Niebch G, Fuhr U, et al. The role of Gilbert’s syndrome and frequent NAT2 slow acetylation polymorphisms in the pharmacokinetics of retigabine. Pharmacogenomics J 2006;6:211-9.

27. Tompson DJ, Crean CS. Clinical Pharmacokinetics of retigabine/ezogabine. Curr Clin Pharmacol 2013;8:319-31.

28. Moshé SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances. Lancet 2015;385:884-98.

29. Sisodiya SM, Marini C. Genetics of antiepileptic drug resistance. Curr Opin Neurol 2009;22:150-6.

30. Dallas S, Miller DS, Bendayan R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev 2006;58:140-61.

31. Potschka H, Brodie MJ. Pharmacoresistance. Handb Clin Neurol 2012;108:741-57.

32. Siddiqui A, Kerb R, Weale ME, Brinkmann U, Smith A, et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 2003;348:1442-8.

33. Haerian BS, Lim KS, Mohamed EH, Tan HJ Tan CT, et al. Lack of association of ABCB1 and PXR polymorphisms with response to treatment in epilepsy. Seizure 2011;20:387-94.

34. Manna I, Gambardella A, Labate A, Mumoli L, Ferlazzo E. Polymorphism of the multidrug resistance 1 gene MDR1/ABCB1 C3435T and response to antiepileptic drug treatment in temporal lobe epilepsy. Seizure 2015;24:124-6.

35. Bournissen FG, Moretti ME, Juurlink DN, Koren G, Walker M, et al. Polymorphism of the MDR1/ABCB1 C3435T drug-transporter and resistance to anticonvulsant drugs: a meta-analysis. Epilepsia 2009;50:898-903.

36. Keangpraphun T, Towanabut S, Chinvarun Y, Kijsanayotin P. Association of ABCB1 C3435T polymorphism with phenobarbital resistance in Thai patients with epilepsy. J Clin Pharm Ther 2015;40:315-9.

37. Chouchi M, Kaabachi W, Klaa H, Tizaoui K, Turki IB, et al. Relationship between ABCB1 3435TT genotype and antiepileptic drugs resistance in epilepsy: updated systematic review and meta-analysis. BMC Neurol 2017;17:32.

38. Kim DW, Lee SK, Chu K, Jang IJ, Yu KS, et al. Lack of association between ABCB1, ABCG2, and ABCC2 genetic polymorphisms and multidrug resistance in partial epilepsy. Epilepsy Res 2009;84:86-90.

39. Ufer M, Mosyagin I, Muhle H, Jacobsen T, Haenisch S, et al. Non-response to antiepileptic pharmacotherapy is associated with the ABCC2-24C > T polymorphism in young and adult patients with epilepsy. Pharmacogenet Genomics 2009;19:353-62.

40. Sun Y, Luo X, Yang K, Sun X, Li X, et al. Neural overexpression of multidrug resistance-associated protein 1 and refractory epilepsy: a meta-analysis of nine studies. Int J Neurosci 2016;126:308-17.

41. Tate SK, Depondt C, Sisodiya SM, Cavalleri GL, Schorge S, et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A 2005;102:5507-12.

42. Baghel R, Grover S, Kaur H, Jajodia A, Rawat C, et al. Evaluating the role of genetic variants on first-line antiepileptic drug response in North India: significance of SCN1A and GABRA1 gene variants in phenytoin monotherapy and its serum drug levels. CNS Neurosci Ther 2016;22:740-57.

43. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 2010;363:1801-11.

44. Haerian BS, Baum L, Kwan P, Tan HJ Raymond AA, et al. SCN1A, SCN2A and SCN3A gene polymorphisms and responsiveness to antiepileptic drugs: a multicenter cohort study and meta-analysis. Pharmacogenomics 2013;14:1153-66.

45. Brunklaus A, Ellis R, Reavey E, Forbes GH, Zuberi SM. Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome. Brain 2012;135:2329-36.

46. Dalic L, Mullen SA, Roulet Perez E, Scheffer I. Lamotrigine can be beneficial in patients with Dravet syndrome. Dev Med Child Neurol 2015;57:200-2.

47. Zhou BT, Zhou QH, Yin JY, Li GL, Qu J, et al. Effects of SCN1A and GABA receptor genetic polymorphisms on carbamazepine tolerability and efficacy in Chinese patients with partial seizures: 2-year longitudinal clinical follow-up. CNS Neurosci Ther 2012;18:566-72.

48. Qu J, Zhang Y, Yang ZQ, Mao XY, Zhou BT, et al. Gene-wide tagging study of the association between KCNT1 polymorphisms and the susceptibility and efficacy of genetic generalized epilepsy in Chinese population. CNS Neurosci Ther 2014;20:140-6.

49. Lynch JM, Tate SK, Kinirons P, Weale ME, Cavalleri GL, et al. No major role of common SV2A variation for predisposition or levetiracetam response in epilepsy. Epilepsy Res 2009;83:44-51.

50. Guo Y, Yan KP, Qu Q, Qu J, Chen ZG, et al. Common variants of KCNJ10 are associated with susceptibility and anti-epileptic drug resistance in Chinese genetic generalized epilepsies. PLoS One 2015;10:e0124896.

51. Piana C, Antunes Nde J, Della Pasqua O. Implications of pharmacogenetics for the therapeutic use of antiepileptic drugs. Expert Opin Drug Metab Toxicol 2014;10:341-58.

52. Cheng CY, Su SC, Chen CH, Chen WL, Deng ST, et al. HLA associations and clinical implications in T-Cell mediated drug hypersensitivity reactions: an updated review. J Immunol Res 2014;2014:565320.

53. Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature 2004;428:486.

54. Tangamornsuksan W, Chaiyakunapruk N, Somkrua R, Lohitnavy M, Tassaneeyakul W. Relationship between the HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol 2013;149:1025-32.

55. Chen P, Lin JJ, Lu CS, Ong CT, Hsieh PF, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med 2011;364:1126-33.

56. Amstutz U, Shear NH, Rieder MJ, Hwang S, Fung V, et al. Recommendations for HLA-B*15:02 and HLA-A*31:01 genetic testing to reduce the risk of carbamazepine-induced hypersensitivity reactions. Epilepsia 2014;55:496-506.

57. Leckband SG, Kelsoe JR, Dunnenberger HM, George AL Jr, Tran E, et al. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and carbamazepine dosing. Clin Pharmacol Ther 2013;94:324-8.

58. Ferrell PB Jr, McLeod HL. Carbamazepine, HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics 2008;9:1543-6.

59. Cheung YK, Cheng SH, Chan EJ, Lo SV, Ng MH, et al. HLA-B alleles associated with severe cutaneous reactions to antiepileptic drugs in Han Chinese. Epilepsia 2013;54:1307-14.

60. Hung SI, Chung WH, Liu ZS, Chen CH, Hsih MS, et al. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 2010;11:349-56.

61. McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 2011;364:1134-43.

62. Ozeki T, Mushiroda T, Yowang A, Takahashi A, Kubo M, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet 2010;20:1034-41.

63. Kaniwa N, Saito Y. The risk of cutaneous adverse reactions among patients with the HLA-A* 31:01 allele who are given carbamazepine, oxcarbazepine or eslicarbazepine: a perspective review. Ther Adv Drug Saf 2013;4:246-53.

64. Genin E, Chen DP, Hung SI, Sekula P, Schumacher M, et al. HLA-A*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and meta-analysis. Pharmacogenomics J 2014;14:281-8.

65. Plumpton CO, Yip VL, Alfirevic A, Marson AG, Pirmohamed M, et al. Cost-effectiveness of screening for HLA-A*31:01 prior to initiation of carbamazepine in epilepsy. Epilepsia 2015;56:556-63.

66. Wang W, Hu FY, Wu XT, An DM, Yan B, et al. Genetic predictors of Stevens-Johnson syndrome and toxic epidermal necrolysis induced by aromatic antiepileptic drugs among the Chinese Han population. Epilepsy Behav 2014;37:16-9.

67. Wang Q, Sun S, Xie M, Zhao K, Li X, et al. Association between the HLA-B alleles and carbamazepine-induced SJS/TEN: a meta-analysis. Epilepsy Res 2017;135:19-28.

68. Striano P. Epilepsy towards the next decade: new trends and hopes in epileptology. Cham: Springer; 2014.

69. Reid CA, Jackson GD, Berkovic SF, Petrou S. New therapeutic opportunities in epilepsy: a genetic perspective. Pharmacol Ther 2010;128:274-80.

70. Møller RS, Dahl HA, Helbig I. The contribution of next generation sequencing to epilepsy genetics. Expert Rev Mol Diagn 2015;15:1531-8.

71. Myers CT, Mefford HC. Advancing epilepsy genetics in the genomic era. Genome Med 2015;7:91.

72. Covanis A. Clinical management of epileptic encephalopathies of childhood and infancy. Expert Rev Neurother 2014;14:687-701.

73. Striano P, Striano S. New and investigational antiepileptic drugs. Expert Opin Investig Drugs 2009;18:1875-84.

74. Striano P, Striano S, Minetti C, Zara F. Refractory, life-threatening status epilepticus in a 3-year-old girl. Lancet Neurol 2008;7:278-84.

75. Striano P, de Jonghe P, Zara F. Genetic epileptic encephalopathies: is all written into the DNA? Epilepsia 2013;54:22-6.

76. Brunklaus A, Zuberi SM. Dravet syndrome-from epileptic encephalopathy to channelopathy. Epilepsia 2014;55:979-84.

77. Balestrini S, Sisodiya SM. Pharmacogenomics in epilepsy. Neurosci Lett 2018;667:27-39.

78. Ceulemans B, Schoonjans AS, Marchau F, Paelinck BP, Lagae L. Five-year extended follow-up status of 10 patients with Dravet syndrome treated with fenfluramine. Epilepsia 2016;57:e129-34.

79. Ceulemans B, Boel M, Leyssens K, Van Rossem C, Neels P, et al. Successful use of fenfluramine as an add-on treatment for Dravet syndrome. Epilepsia 2012;53:1131-9.

80. McCann UD, Seiden LS, Rubin LJ, Ricaurte GA. Brain serotonin neurotoxicity and primary pulmonary hypertension from fenfluramine and dexfenfluramine. A systematic review of the evidence. JAMA 1997;278:666-72.

81. Dahl CF, Allen MR, Urie PM, Hopkins PN. Valvular regurgitation and surgery associated with fenfluramine use: an analysis of 5743 individuals. BMC Med 2008;6:34.

82. Fuller RW, Snoddy HD, Robertson DW. Mechanisms of effects of d-fenfluramine on brain serotonin metabolism in rats: uptake inhibition versus release. Pharmacol Biochem Behav 1988;30:715-21.

83. Dinday MT, Baraban SC. Large-scale phenotype-based antiepileptic drug screening in a zebrafish model of Dravet syndrome. eNeuro 2015; doi: 10.1523/ENEURO.0068-15.2015.

84. Zhang Y, Kecskés A, Copmans D, Langlois M, Crawford AD, et al. Pharmacological characterization of an antisense knockdown zebrafish model of Dravet syndrome: inhibition of epileptic seizures by the serotonin agonist fenfluramine. PLoS One 2015;10:e0125898.

85. Pierson TM, Yuan H, Marsh ED, Fuentes-Fajardo K, Adams DR, et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol 2014;1:190-8.

86. Møller RS, Heron SE, Larsen LH, Lim CX, Ricos MG, et al. Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia 2015;56:e114-20.

87. Milligan CJ, Li M, Gazina EV, Heron SE, Nair U, et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol 2014;75:581-90.

88. Mikati MA, Jiang YH, Carboni M, Shashi V, Petrovski S, et al. Quinidine in the treatment of KCNT1-positive epilepsies. Ann Neurol 2015;78:995-9.

89. Engelsen BA, Tzoulis C, Karlsen B, Lillebø A, Laegreid LM, et al. POLG1 mutations cause a syndromic epilepsy with occipital lobe predilection. Brain 2008;131:818-28.

90. Daci A, Beretta G, Vllasaliu D, Shala A, Govori V, et al. Polymorphic variants of SCN1A and EPHX1 influence plasma carbamazepine concentration, metabolism and pharmacoresistance in a population of Kosovar Albanian epileptic patients. PLoS One 2015;10:e0142408.

91. Ma CL, Wu XY, Jiao Z, Hong Z, Wu ZY, et al. SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy. Pharmacogenomics 2015;16:347-60.

92. Grover S, Talwar P, Gourie-Devi M, Gupta M, Bala K, et al. Genetic polymorphisms in sex hormone metabolizing genes and drug response in women with epilepsy. Pharmacogenomics 2010;11:1525-34.

93. Talwar P, Kanojia N, Mahendru S, Baghel R, Grover S, et al. Genetic contribution of CYP1A1 variant on treatment outcome in epilepsy patients: a functional and interethnic perspective. Pharmacogenomics J 2017;17:242-51.

94. Franz DN, Agricola K, Mays M, Tudor C, Care MM, et al. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann Neurol 2015;78:929-38.

95. Marsan E, Ishida S, Schramm A, Weckhuysen S, Muraca G, et al. Depdc5 knockout rat: a novel model of mTORopathy. Neurobiol Dis 2016;89:180-9.

96. Galanopoulou AS, Gorter JA, Cepeda C. Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia 2012;53:1119-30.

97. Scheffer IE, Heron SE, Regan BM, Mandelstam S, Crompton DE, et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol 2014;75:782-7.

98. Paemka L, Mahajan VB, Ehaideb SN, Skeie JM, Tan MC, et al. Seizures are regulated by ubiquitin-specific peptidase 9 X-linked (USP9X), a de-ubiquitinase. PLoS Genet 2015;11:e1005022.

99. De Vivo DC, Leary L, Wang D. Glucose transporter 1 deficiency syndrome and other glycolytic defects. J Child Neurol 2002;17:3S15-23.

100. Simeone KA, Matthews SA, Rho JM, Simeone TA. Ketogenic diet treatment increases longevity inKcna1-null mice, a model of sudden unexpected death in epilepsy. Epilepsia 2016;57:e178-82.

101. De Giorgis V, Veggiotti P. GLUT1 deficiency syndrome 2013: current state of the art. Seizure 2013;22:803-11.

102. Mills PB, Struys E, Jakobs C, Plecko B, Baxter P, et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 2006;12:307-9.

103. Zuberi SM, Brunklaus A. Epilepsy in 2017: precision medicine drives epilepsy classification and therapy. Nat Rev Neurol 2018;14:67-8.

104. Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol 2016;15:270-8.

105. Devinsky O, Cross JH, Laux L, Marsh E, Miller I, et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med 2017;376:2011-20.

106. O’Callaghan FJ, Edwards SW, Alber FD, Hancock E, Johnson AL, et al. Safety and effectiveness of hormonal treatment versus hormonal treatment with vigabatrin for infantile spasms (ICISS): a randomised, multicentre, open-label trial. Lancet Neurol 2017;16:33-42.

107. Eunson LH, Rea R, Zuberi SM, Youroukos S, Panayiotopoulos CP, et al. Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann Neurol 2000;48:647-56.

108. Rajakulendran S, Schorge S, Kullmann DM, Hanna MG. Episodic ataxia type 1: a neuronal potassium channelopathy. Neurotherapeutics 2007;4:258-66.

109. Wright S, Wallace E, Hwang Y, Maganti R. Seizure phenotypes, periodicity, and sleep-wake pattern of seizures in Kcna-1 null mice. Epilepsy Behav 2016;55:24-9.

110. Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, et al. Orexin receptor antagonism improves sleep and reduces seizures in Kcna1-null mice. Sleep 2016;39:357-68.

111. Mishra V, Karumuri BK, Gautier NM, Liu R, Hutson TN, et al. Scn2a deletion improves survival and brain-heart dynamics in the Kcna1-null mouse model of sudden unexpected death in epilepsy (SUDEP). Hum Mol Genet 2017;26:2091-103.

112. Gardella E, Marini C, Trivisano M, Fitzgerald MP, Alber M, et al. The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology 2018;91:e1112-24.

113. Anand G, Collett-White F, Orsini A, Thomas S, Jayapal S, et al. Autosomal dominant SCN8A mutation with an unusually mild phenotype. Eur J Paediatr Neurol 2016;20:761-5.

114. Gardella E, Becker F, Møller RS, Schubert J, Lemke JR, et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol 2016;79:428-36.

115. Anderson LL, Thompson CH, Hawkins NA, Nath RD, Petersohn AA, et al. Antiepileptic activity of preferential inhibitors of persistent sodium current. Epilepsia 2014;55:1274-83.

116. Lopez-Santiago LF, Yuan Y, Wagnon JL, Hull JM, Frasier CR, et al. Neuronal hyperexcitability in a mouse model of SCN8A epileptic encephalopathy. Proc Natl Acad Sci U S A 2017;114:2383-8.

117. Patel RR, Barbosa C, Brustovetsky T, Brustovetsky N, Cummins TR. Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain 2016;139:2164-81.

118. Watanabe Y, Kimura J. Inhibitory effect of amiodarone on Na(+)/Ca(2+) exchange current in guinea-pig cardiac myocytes. Br J Pharmacol 2000;131:80-4.

119. Watanabe Y, Kimura J. Blocking effect of bepridil on Na+/Ca2+ exchange current in guinea pig cardiac ventricular myocytes. Jpn J Pharmacol 2001;85:370-5.

120. Watanabe Y, Iwamoto T, Shigekawa M, Kimura J. Inhibitory effect of aprindine on Na+/Ca2+ exchange current in guinea-pig cardiac ventricular myocytes. Br J Pharmacol 2002;136:361-6.

121. Yamakawa T, Watanabe Y, Watanabe H, Kimura J. Inhibitory effect of cibenzoline on Na+/Ca2+ exchange current in guinea-pig cardiac ventricular myocytes. J Pharmacol Sci 2012;120:59-62.

122. Pena SD, Coimbra RL. Ataxia and myoclonic epilepsy due to a heterozygous new mutation in KCNA2: proposal for a new channelopathy. Clin Genet 2015;87:e1-3.

123. Jouvenceau A, Eunson LH, Spauschus A, Ramesh V, Zuberi SM, et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 2001;358:801-7.

124. Xie G, Harrison J, Clapcote SJ, Huang Y, Zhang JY, et al. A new Kv1.2 channelopathy underlying cerebellar ataxia. J Biol Chem 2010;285:32160-73.

125. Imbrici P, Jaffe SL, Eunson LH, Davies NP, Herd C, et al. Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain 2004;127:2682-92.

126. Damaj L, Lupien-Meilleur A, Lortie A, Riou É, Ospina LH, et al. CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur J Hum Genet 2015;23:1505-12.

127. Hino-Fukuyo N, Kikuchi A, Arai-Ichinoi N, Niihori T, Sato R, et al. Genomic analysis identifies candidate pathogenic variants in 9 of 18 patients with unexplained West syndrome. Hum Genet 2015;134:649-58.

128. Reinson K, Õiglane-Shlik E, Talvik I, Vaher U, Õunapuu A, et al. Biallelic CACNA1A mutations cause early onset epileptic encephalopathy with progressive cerebral, cerebellar, and optic nerve atrophy. Am J Med Genet A 2016;170:2173-6.

129. Cramer SW, Popa LS, Carter RE, Chen G, Ebner TJ. Abnormal excitability and episodic low-frequency oscillations in the cerebral cortex of the tottering mouse. J Neurosci 2015;35:5664-79.

130. Zamponi GW. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 2016;15:19-34.

131. Song I, Kim D, Choi S, Sun M, Kim Y, et al. Role of the 1G T-type calcium channel in spontaneous absence seizures in mutant mice. J Neurosci 2004;24:5249-57.

132. Nava C, Dalle C, Rastetter A, Striano P, de Kovel CG, et al. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet 2014;46:640-5.

133. Savelieva I, Camm A. Novel If current inhibitor ivabradine: safety considerations. In: Camm A, Tendera M, editors. Heart rate slowing by If current inhibition. Basel: Karger; 2006. pp. 79-96.

134. Cacheaux LP, Topf N, Tibbs GR, Schaefer UR, Levi R, et al. Impairment of hyperpolarization-activated, cyclic nucleotide-gated channel function by the intravenous general anesthetic propofol. J Pharmacol Exp Ther 2005;315:517-25.

135. Lyashchenko AK, Redd KJ, Yang J, Tibbs GR. Propofol inhibits HCN1 pacemaker channels by selective association with the closed states of the membrane embedded channel core. J Physiol 2007;583:37-56.

136. Poolos NP, Migliore M, Johnston D. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 2002;5:767-74.

137. Surges R, Freiman TM, Feuerstein TJ. Gabapentin increases the hyperpolarization-activated cation current Ih in rat CA1 pyramidal cells. Epilepsia 2003;44:150-6.

138. Strauss U, Kole MH, Bräuer AU, Pahnke J, Bajorat R, et al. An impaired neocortical Ih is associated with enhanced excitability and absence epilepsy. Eur J Neurosci 2004;19:3048-58.

139. Ghasemi M, Hadipour-Niktarash A. Pathologic role of neuronal nicotinic acetylcholine receptors in epileptic disorders: implication for pharmacological interventions. Rev Neurosci 2015;26:199-223.

140. Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015;6:22.

141. Howell KB, Eggers S, Dalziel K, Riseley J, Mandelstam S, et al. A population-based cost-effectiveness study of early genetic testing in severe epilepsies of infancy. Epilepsia 2018;59:1177-87.

142. Córdoba M, Rodriguez-Quiroga SA, Vega PA, Salinas V, Perez-Maturo J, et al. Whole exome sequencing in neurogenetic odysseys: an effective, cost- and time-saving diagnostic approach. PLoS One 2018;13:e0191228.

143. Orsini A, Zara F, Striano P. Recent advances in epilepsy genetics. Neurosci Lett 2018;667:4-9.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/