REFERENCES
1. Zhang Z, Zhang B, Xu W, Lin Z. Demystifying exploitable bugs in smart contracts. In: 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). Melbourne, Australia: IEEE; May 14-20, 2023. pp. 615–27.
2. Wang Y, Kordi Y, Mishra S, et al. Self-instruct: aligning language models with self-generated instructions. arXiv preprint arXiv: 221210560 2022.
3. OpenAI; 2024. Available from https://openai.com/. [Last accessed on 25 Dec 2024].
4. Chen C, Su J, Chen J, et al. When chatgpt meets smart contract vulnerability detection: How far are we? arXiv preprint arXiv: 230905520 2023.
5. Han Y, Liu C, Wang P. A comprehensive survey on vector database: storage and retrieval technique, challenge. arXiv preprint arXiv: 231011703 2023.
6. Brent L, Jurisevic A, Kong M, et al. Vandal: A scalable security analysis framework for smart contracts. arXiv preprint arXiv: 180903981 2018.
7. Tsankov P, Dan A, Drachsler-Cohen D, et al. Securify: practical security analysis of smart contracts. In: Proceedings of the 2018 ACM SIGSAC conference on computer and communications security. Toronto Canada: Association for Computing Machinery, New York, NY, United States; October 15-19, 2018. pp. 67–82.
8. Feist J, Grieco G, Groce A. Slither: a static analysis framework for smart contracts. In: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). Montreal, QC, Canada: IEEE; May 27-27, 2019. pp. 8–15.
9. Grieco G, Song W, Cygan A, Feist J, Groce A. Echidna: effective, usable, and fast fuzzing for smart contracts. In: Proceedings of the 29th ACM SIGSOFT international symposium on software testing and analysis. Virtual Event USA: Association for Computing Machinery, New York, NY, United States; July 18-22, 2020. pp. 557–60.
10. Jiang B, Liu Y, Chan WK. Contractfuzzer: fuzzing smart contracts for vulnerability detection. In: Proceedings of the 33rd ACM/IEEE international conference on automated software engineering. Montpellier France: Association for Computing Machinery, New York, NY, United States; September 3-7, 2018. pp. 259–69.
11. Wüstholz V, Christakis M. Harvey: a greybox fuzzer for smart contracts. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. Virtual Event USA: Association for Computing Machinery, New York, NY, United States; November 8-13, 2020. pp. 1398–409.
12. Luu L, Chu DH, Olickel H, Saxena P, Hobor A. Making smart contracts smarter. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. Vienna Austria: Association for Computing Machinery, New York, NY, United States; October 24-28, 2016. pp. 254–69.
13. halmos; . 2024. Available from https://github.com/a16z/halmos. [Last accessed on 25 Dec 2024].
14. Mythril; . 2024. Available from https://github.com/Consensys/mythril. [Last accessed on 25 Dec 2024].
15. Kalra S, Goel S, Dhawan M, Sharma S. ZEUS: Analyzing Safety of Smart Contracts. In: Network and Distributed System Security Symposium; 2018. Available from: https://api.semanticscholar.org/CorpusID:3481056. [Last accessed on 25 Dec 2024].
16. Permenev A, Dimitrov D, Tsankov P, Drachsler-Cohen D, Vechev M. Verx: Safety verification of smart contracts. In: 2020 IEEE symposium on security and privacy (SP). San Francisco, CA, USA: IEEE; May 18-21, 2020. pp. 1661–77.
17. So S, Lee M, Park J, Lee H, Oh H. Verismart: A highly precise safety verifier for ethereum smart contracts. In: 2020 IEEE Symposium on Security and Privacy (SP). San Francisco, CA, USA: IEEE; May 18-21, 2020. pp. 1678–94.
18. Rani P, Lamba R, Sachdeva RK, Kumar K, Iwendi C. A machine learning model for Alzheimer's disease prediction. IET Cyber-Physical Systems: Theory & Applications 2024.
19. Taheri R. UNBUS: uncertainty-aware deep botnet detection system in presence of perturbed samples; 2022.
20. Wang Z, Zhang L, Cao C, Liu P. The effectiveness of large language models (ChatGPT and CodeBERT) for security-oriented code analysis. Available at SSRN 4567887 2023.
21. David I, Zhou L, Qin K, et al. Do you still need a manual smart contract audit? arXiv preprint arXiv: 230612338 2023.
22. Sun Y, Wu D, Xue Y, Liu H, Wang H, et al. Gptscan: Detecting logic vulnerabilities in smart contracts by combining gpt with program analysis. In: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. Association for Computing Machinery, New York, NY, United States; April 14-20, 2024. pp. 1–13.
23. Ma R, Jian Z, Chen G, Ma K, Chen Y. Rejection: A AST-based reentrancy vulnerability detection method. In: Trusted Computing and Information Security: 13th Chinese Conference, CTCIS 2019, Shanghai, China, October 24–27, 2019, Revised Selected Papers 13. Springer; 2020. pp. 58–71.
24. DefiHacks; . 2024. Available from https://web3sec.notion.site/web3sec/I-m-SunSec-ddaa8bf9a985494dbaf70d698345b899. [Last accessed on 25 Dec 2024].
25. Chroma; . 2024. Available from https://docs.trychroma.com/. [Last accessed on 25 Dec 2024].
26. langchain; . 2024. Available from https://www.langchain.com/. [Last accessed on 25 Dec 2024].