REFERENCES
1. Mavroeidis V, Vishi K, Zych MD, Jøsang A. The impact of quantum computing on present cryptography. arXiv.[Preprint.] Mar 31, 2018 [accessed 2024 Sep 9]. Available from: https://arxiv.org/abs/1804.00200.
2. Chen L, Jordan S, Liu YK, et al. Report on post-quantum cryptography. 2016. Available from: https://nvlpubs.nist.gov/nistpubs/ir/2016/nist.ir.8105.pdf.[Last accessed on 9 Sep 2024].
3. Renner R, Gisin N, Kraus B. Information-theoretic security proof for quantum-key-distribution protocols. Phys Rev A 2005;72:012332.
4. Stucki D, Legré M, Buntschu F, et al. Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J Phys 2011;13:123001.
5. Peev M, Pacher C, Alléaume R, et al. The SECOQC quantum key distribution network in Vienna. New J Phys 2009;11:075001.
6. Gisin N, Ribordy G, Zbinden H, Stucki D, Brunner N, Scarani V. Towards practical and fast quantum cryptography. arXiv.[Preprint.] Nov 3, 2004 [accessed 2024 Sep 9]. Available from: https://arxiv.org/abs/quant-ph/0411022.
7. Stucki D, Brunner N, Gisin N, Scarani V, Zbinden H. Fast and simple one-way quantum key distribution. Appl Phys Lett 2005;87:194108.
8. Stucki D, Barreiro C, Fasel S, et al. Continuous high speed coherent one-way quantum key distribution. Opt Express 2009;17:13326-34.
9. Wang S, Chen W, Yin ZQ, et al. Field and long-term demonstration of a wide area quantum key distribution network. Opt Express 2014;22:21739-56.
10. Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. Theor Comput Sci 2014;560:7-11.
12. Braun RP, Geitz M. The OpenQKD testbed in Berlin. In: Chang-Hasnain C, Willner A, Shieh W, Shum P, Su Y, Li G, Eggleton B, Essiambre R, Dai D, Ma D, editors. Technical digest series. Optica Publishing Group; 2021. p. M4C.2.
13. Sasaki M, Fujiwara M, Ishizuka H, et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt Express 2011;19:10387-409.
14. Pistoia M, Amer O, Behera MR, et al. Paving the way toward 800 Gbps quantum-secured optical channel deployment in mission-critical environments. Quantum Sci Technol 2023;8:035015.
15. Cao Y, Zhao Y, Wang Q, Zhang J, Ng SX, Hanzo L. The evolution of quantum key distribution networks: on the road to the Qinternet. IEEE Commun Surv Tutor 2022;24:839-94.
16. Liu R, Rozenman GG, Kundu NK, Chandra D, De D. Towards the industrialisation of quantum key distribution in communication networks: a short survey. IET Quantum Commun 2022;3:151-63.
17. Jain N, Hoff U, Gambetta M, Rodenberg J, Gehring T. Quantum key distribution for data center security - a feasibility study. arXiv.[Preprint.] Jul 24, 2023 [accessed 2024 Sep 9]. Available from: https://arxiv.org/abs/2307.13098.
18. Global cloud index projects cloud traffic to represent 95 percent of total data center traffic by 2021. 2018. Available from: https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2018/m02/global-cloud-index-projects-cloud-traffic-to-represent-95-percent-of-total-data-center-traffic-by-2021.html.[Last accessed on 9 Sep 2024].
19. Cheng Q, Bahadori M, Glick M, Rumley S, Bergman K. Recent advances in optical technologies for data centers: a review. Optica 2018;5:1354-70.
20. Zatoukal B, Kutschera F, Poppe A, et al. OpenQKD use-case for securing sensitive medical data at rest and in transit. In: 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC); 2021 Jun 21-25; Munich, Germany. IEEE; 2021. p. 1.
21. Moreno J, Proctor C. Implementing a quantum-secured network in a metropolitan area. 2023. Available from: https://aws.amazon.com/blogs/quantum-computing/implementing-a-quantum-secured-network-in-a-metropolitan-area/.[Last accessed on 9 Sep 2024].
22. Scarani V, Bechmann-Pasquinucci H, Cerf NJ, Dušek M, Lütkenhaus N, Peev M. The security of practical quantum key distribution. Rev Mod Phys 2009;81:1301-50.
23. Redefining security: XGR series – QKD platform: quantum key distribution designed for academia & research institutes. 2023. Available from: https://marketing.idquantique.com/acton/attachment/11868/f-5f50c28e-bac2-40a7-bc5a-30971c980753/1/-/-/-/-/XGR%20Series_Brochure.pdf.[Last accessed on 9 Sep 2024].
24. Redefining security: Cerberis XG QKD system. 2024. Available from: https://marketing.idquantique.com/acton/attachment/11868/f-2e621d25-e414-4772-a482-b1b272c24c11/1/-/-/-/-/Cerberis%20XG%20QKD%20System_Brochure.pdf.[Last accessed on 9 Sep 2024].
25. Branciard C, Gisin N, Scarani V. Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography. New J Phys 2008;10:013031.
26. Korzh B, Lim CCW, Houlmann R, et al. Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat Photonics 2015;9:163-68.
27. Walenta N, Burg A, Caselunghe D, et al. A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing. New J Phys 2014;16:013047.
28. Curty M. Foiling zero-error attacks against coherent-one-way quantum key distribution. Phys Rev A 2021;104:062417.
29. Gao RQ, Xie YM, Gu J, et al. Simple security proof of coherent-one-way quantum key distribution. Opt Express 2022;30:23783-95.
30. Constantin J, Houlmann R, Preyss N, et al. An FPGA-based 4 Mbps secret key distillation engine for quantum key distribution systems. J Signal Process Syst 2017;86:1-15.
31. Yuan Z, Plews A, Takahashi R, et al. 10-Mb/s quantum key distribution. J Lightwave Technol 2018;36:3427-33.
32. ETSI GS QKD 014. Quantum Key Distribution (QKD); Protocol and data format of REST-based key delivery API. 2019. Available from: https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf.[Last accessed on 9 Sep 2024].
34. Christandl M, Renner R, Ekert A. A generic security proof for quantum key distribution. arXiv.[Preprint.] Feb 18, 2004[accessed 2024 Sep 9]. Available from: https://arxiv.org/abs/quant-ph/0402131.
35. Shor PW, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett 2000;85:441-4.
36. González-Payo J, Trényi R, Wang W, Curty M. Upper security bounds for coherent-one-way quantum key distribution. Phys Rev Lett 2020;125:260510.
37. Trényi R, Curty M. Zero-error attack against coherent-one-way quantum key distribution. New J Phys 2021;23:093005.
38. ITU-T recommendations. ITU-T G.657: Characteristics of a bending-loss insensitive single-mode optical fibre and cable. 2016. Available from: https://handle.itu.int/11.1002/1000/13078.[Last accessed on 9 Sep 2024].
39. ITU-T recommendations. ITU-T G.652: Characteristics of a single-mode optical fibre and cable. 2016. Available from: https://www.itu.int/rec/T-REC-G.652.[Last accessed on 9 Sep 2024].
40. Da Lio B, Bacco D, Cozzolino D, et al. Experimental demonstration of the DPTS QKD protocol over a 170 km fiber link. Appl Phys Lett 2019;114:011101.
41. Telecommunications Standards Advisory Committee (TSAC). Reference specification. Quantum key distribution networks. IMDA RS QKDN. 2023. Available from: https://www.imda.gov.sg/-/media/Imda/Files/Regulation-Licensing-and-Consultations/ICT-Standards/Telecommunication-Standards/Reference-Spec/IMDA-RS-QKDN-final.pdf.[Last accessed on 3 Sep 2024].
42. ITU-T recommendations:ITU-T Y.3800 (2019) Corrigendum 1 (04/20): overview on networks supporting quantum key distribution. 2020. Available from: https://www.itu.int/rec/T-REC-Y.3800/en.[Last accessed on 3 Sep 2024].
43. Lo HK, Curty M, Qi B. Measurement-device-independent quantum key distribution. Phys Rev Lett 2012;108:130503.
44. Lucamarini M, Yuan ZL, Dynes JF, Shields AJ. Overcoming the rate - distance limit of quantum key distribution without quantum repeaters. Nature 2018;557:400-3.
45. Azuma K, Economou SE, Elkouss D, et al. Quantum repeaters: from quantum networks to the quantum internet. Rev Mod Phys 2023;95:045006.
46. Chen TY, Jiang X, Tang SB, et al. Implementation of a 46-node quantum metropolitan area network. npj Quantum Inf 2021;7:134.
47. Fröhlich B, Dynes JF, Lucamarini M, Sharpe AW, Yuan Z, Shields AJ. A quantum access network. Nature 2013;501:69-72.
48. Fan-Yuan GJ, Lu FY, Wang S, et al. Robust and adaptable quantum key distribution network without trusted nodes. Optica 2022;9:812-23.
49. Chen YA, Zhang Q, Chen TY, et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 2021;589:214-19.
50. Grünenfelder F, Boaron A, Resta GV, et al. Fast single-photon detectors and real-time key distillation enable high secret-key-rate quantum key distribution systems. Nat Photonics 2023;17:422-26.
52. Huang C, Chen Y, Luo T, et al. A cost-efficient quantum access network with qubit-based synchronization. Sci Chi Phys Mechan Astron 2024;67:240312.
53. Matsuura T, Maeda K, Sasaki T, Koashi M. Finite-size security of continuous-variable quantum key distribution with digital signal processing. Nat Commun 2021;12:252.
54. Chen Z, Wang X, Yu S, Li Z, Guo H. Continuous-mode quantum key distribution with digital signal processing. npj Quantum Inf 2023;9:28.
56. Renner R, Wolf R. The debate over QKD: a rebuttal to the NSA's objections. arXiv.[Preprint.] Jul 27, 2023[accessed 2024 Sep 9]. Available from: https://arxiv.org/abs/2307.15116.