REFERENCES
2. Kshetri N, Voas JM. Cryptojacking. Computer 2022;55:18-19.
3. Porras PA, Saïdi H. A foray into conficker's logic and rendezvous points. In: Lee W, editor. 2nd USENIX Workshop on Large-Scale Exploits and Emergent Threats, LEET '09. USENIX Association; 2009.
5. Certified P. Security report 2021: bridging the gap; 2021. (Last accessed) January 2022.
8. Mach P, Becvar Z. Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surv 2017;19:1628-56.
10. Makhdoom I, Abolhasan M, Lipman J, Liu RP, Ni W. Anatomy of threats to the internet of things. IEEE Commun Surv Tutor 2019;21:1636-75.
11. Mayes K, Markantonakis K. Smart cards, tokens, security and applications. 1st ed. Springer; 2007.
13. Tria A, Choukri H. Invasive attacks. In: van Tilborg HCA, Jajodia S, editors. Encyclopedia of cryptography and security (2nd Ed.). Springer; 2011. pp. 623-29.
14. Helfmeier C, Nedospasov D, Tarnovsky C, et al. Breaking and entering through the silicon. In: Sadeghi A, Gligor VD, Yung M, editors. ACM SIGSAC Conference on Computer and Communications Security, CCS'13, Berlin, Germany, November 4-8, 2013. ACM; 2013. pp. 733-44.
16. Hutle M, Kammerstetter M. Resilience against physical attacks. In: Skopik F, Smith P, editors. Smart Grid Security: innovative solutions for modernized grid. Syness 2015. pp. 79-112.
19. Torrance R, James D. The state-of-the-art in IC reverse engineering. In: Clavier C, Gaj K, editors. 11th International Workshop Cryptographic Hardware and Embedded Systems - CHES. vol. 5747 of Lecture Notes in Computer Science. Springer; 2009. pp. 363-81.
23. Butun I, Österberg P, Song H. Security of the internet of things: vulnerabilities, attacks, and countermeasures. IEEE Commun Surv Tutor 2020;22:616-44.
24. Xie H, Yan Z, Yao Z, Atiquzzaman M. Data collection for security measurement in wireless sensor networks: a survey. IEEE Internet Things J 2019;6:2205-24.
25. Lo O, Buchanan WJ, Carson D. Power analysis attacks on the AES-128 S-box using differential power analysis (DPA) and correlation power analysis (CPA). J Cyber Secur Technol 2017;1:88-107.
26. C A, Roy B, Mandarapu BSV, Menezes B. "S-Box" implementation of AES is not side channel resistant. J Hardw Syst Secur 2020;4:86-97.
27. Brisfors M, Forsmark S. Deep-learning side-channel attacks on AES.
28. Heyszl J, Miller K, Unterstein F, et al. Investigating profiled side-channel attacks against the DES key schedule. TCHES 2020:22-72.
29. Zhou Y, Feng D. Side-channel attacks: ten years after its publication and the impacts on cryptographic module security testing. Available from: https://eprint.iacr.org/2005/388.pdf. [Last accessed on 22 Nov 2022].
30. Finke T, Gebhardt M, Schindler W. A new side-channel attack on RSA prime generation. In: Clavier C, Gaj K, editors. Cryptographic Hardware and Embedded Systems - CHES 2009. CHES 2009. Lecture Notes in Computer Science, vol 5747. Springer, Berlin, Heidelberg.
31. Msgna M, Markantonakis K, Mayes K. Precise instruction-level side channel profiling of embedded processors. In: Information Security Practice and Experience - 10th International Conference, ISPEC 2014, Fuzhou, China, May 5-8, 2014. Proceedings. vol. 8434 of Lecture Notes in Computer Science. Springer; 2014. pp. 129-43.
32. Msgna M, Markantonakis K, Naccache D, Mayes K. Verifying software integrity in embedded systems: A side channel approach. In: Constructive Side-Channel Analysis and Secure Design - 5th International Workshop, COSADE 2014, Paris, France, April 13-15, 2014. Revised Selected Papers. vol. 8622 of Lecture Notes in Computer Science. Springer; 2014. pp. 261-80.
33. Msgna M, Markantonakis K, Mayes K. The B-side of side channel leakage: control flow security in embedded systems. vol. 127 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer; 2013. pp. 288–304.
34. Sayakkara A, Le-Khac NA, Scanlon M. Leveraging electromagnetic side-channel analysis for the investigation of IoT devices. Digit Investig 2019;29:94-103.
36. McDonald T. Side-Channel based detection of malicious software. In: 7th Software Security, Protection and Reverse Engineering Workshop (SSPREW); 2017.
37. Liou J, Jain S, Singh SR, Taksinwarajan D, Seneviratne S. Side-channel information leaks of Z-wave smart home IoT devices: demo abstract. In: Nakazawa J, Huang P, editors. SenSys '20: The 18th ACM Conference on Embedded Networked Sensor Systems, Virtual Event, Japan, November 16-19, 2020. ACM; 2020. pp. 637-8.
38. Pammu AA, Chong K, Ho W, Gwee B. Interceptive side channel attack on AES-128 wireless communications for IoT applications. In: 2016 IEEE Asia Pacific Conference on Circuits and Systems, APCCAS; 2016. pp. 650-3.
39. Mirtskhulava L, Globa L, Meshveliani N, Gulua N. Cryptanalysis of internet of things (IoT) wireless technology. In: 2019 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo); 2019. pp. 1-4.
40. Tewari A, Gupta BB. Cryptanalysis of a novel ultra-lightweight mutual authentication protocol for IoT devices using RFID tags. J Supercomput 2017;73:1085-102.
41. Dwivedi AD. Security analysis of lightweight IoT cipher: chaskey. Cryptography 2020;4:22.
42. Chan A, Liu X, Noubir G, Thapa B. Broadcast control channel jamming: resilience and identification of traitors. Int Symp Inf Theory 2007:2496-500.
43. Chan H, Perrig A. Security and privacy in sensor networks. Computer 2003;36:103-5.
44. Khan W, Xiang Y, Aalsalem M, Arshad Q. The selective forwarding attack in sensor networks: detections and countermeasures. Int J Microw Wirel Technol 2012;2:33-44.
45. Bysani LK, Turuk AK. A survey on selective forwarding attack in wireless sensor networks. In: 2011 International Conference on Devices and Communications (ICDeCom); 2011. pp. 1-5.
46. Zhang Y, Minier M. Selective forwarding attacks against data and ACK flows in network coding and countermeasures. J Comput Netw Commun 2012; doi: 10.1155/2012/184783.
47. Zhang Q, Zhang W. Accurate detection of selective forwarding attack in wireless sensor networks. Int J Distrib Sens Netw 2019;15.
48. Yu B, Xiao B. Detecting selective forwarding attacks in wireless sensor networks. In: Proceedings 20th IEEE International Parallel Distributed Processing Symposium; 2006.
49. Wood AD, Stankovic JA. Denial of service in sensor networks. Computer 2002;35:54-62.
50. Karlof C, Wagner D. Secure routing in wireless sensor networks: attacks and countermeasures. In: Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications; 2003. pp. 113-27.
53. Do V, Engelstad PE, Feng B, Thanh D. Detection of DNS tunneling in mobile networks using machine learning; 2017. pp. 221-30.
55. Zhao K, Ge L. A survey on the internet of things security. In: International Conference on Computational Intelligence & Security; . pp. 663-7.
56. Alanazi S, Al-Muhtadi J, Derhab A, et al. On resilience of wireless mesh routing protocol against DoS attacks in IoT-based ambient assisted living applications. In: Application & Services in International Conference on EHealth Networking.
58. Liang L, Zheng K, Sheng Q, Huang X. A denial of service attack method for an IoT system. In: 2016 8th International Conference on Information Technology in Medicine and Education (ITME); 2016. pp. 360-64.
60. Vlajic N, Zhou D. IoT as a land of opportunity for DDoS hackers. Computer 2018;51:26-34.
63. Markowsky L, Markowsky G. Scanning for vulnerable devices in the internet of things.
64. Agarwal S, Oser P, Lueders S. Detecting IoT devices and how they put large heterogeneous networks at security risk. Sensors 2019;19:4107.
67. Antonopoulos A, Kapatsori C, Makris Y. Hardware trojans in analog, mixed-signal, and RF ICs; 2018. pp. 101-23.
68. Yang K, Hicks M, Dong Q, Austin T, Sylvester D. A2: analog malicious hardware. In: 2016 IEEE symposium on security and privacy (SP); 2016. pp. 18-37.
70. Ngo QD, Nguyen HT, Van-HoangLe, Nguyen DH. A survey of IoT malware and detection methods based on static features. ICT Express 2020;6:280-6.
74. Ahmed M, Pathan AK. False data injection attack (FDIA): an overview and new metrics for fair evaluation of its countermeasure. Complex Adapt Syst Model 2020;8:4.
75. Deng R, Xiao G, Lu R, Liang H, Vasilakos A. False data injection on state estimation in power systems - attacks, impacts, and defense: a survey. IEEE Trans Industr Inform 2017;13:411-23.
77. Ahmed M, Ullah ASSMB. False data injection attacks in healthcare. In australasian conference on data mining. Springer; 2007. pp. 192-202.
82. Wazid M, Das AK, Khan MK, et al. Secure authentication scheme for medicine anti-counterfeiting system in IoT environment. IEEE Internet Things J 2017;4:1634-46.
83. Zhou J, Cao Z, Dong X, Lin X, Vasilakos AV. Securing m-healthcare social networks: challenges, countermeasures and future directions. IEEE Wirel Commun 2013;20:12-21.
84. Lin C, He D, Huang X, Choo KKR, Vasilakos AV. BSeIn: a blockchain-based secure mutual authentication with fine-grained access control system for industry 4.0. J Netw Comput Appl 2018;116:42-52.
85. Yang H, Yuan J, Li C, et al. BrainIoT: brain-like productive services provisioning with federated learning in industrial IoT. IEEE Internet Things J 2022;9:2014-24.
86. Srinivas J, Das AK, Wazid M, Vasilakos AV. Designing secure user authentication protocol for big data collection in IoT-based intelligent transportation system. IEEE Internet Things J 2021;8:7727-44.
87. Chan H, Perrig A, Song D. Random key predistribution schemes for sensor networks. In: 2003 Symposium on Security and Privacy, 2003.; 2003. pp. 197- 213.
88. Xiao Y, Rayi VK, Sun B, Du X, Hu F, et al. A survey of key management schemes in wireless sensor networks. Computer Communications 2007;30:2314-41.
90. Du W, Deng J, Han Y, et al. A pairwise key predistribution scheme for wireless sensor networks. ACM Trans Inf Syst Secur 2005;8:228-58.
91. Weingart SH. Physical security devices for computer subsystems: a survey of attacks and defenses. In: Koç ÇK, Paar C, editors. Cryptographic hardware and embedded systems - CHES 2000. Berlin, Heidelberg: Springer Berlin Heidelberg; 2000. pp. 302-17.