REFERENCES
24. Albano P, Castiglione A, Cattaneo G, De Maio G, De Santis A. .
25. Leguesse Y, Vella M, Colombo C, Hernandez-castro J. Reducing the forensic footprint with Android accessibility attacks. In: Markantonakis K, Petrocchi M, editors. Security and trust management. Cham: Springer International Publishing; 2020. p. 22-38.
26. Albano P, Castiglione A, Cattaneo G, De Santis A. .
27. Pieterse H, Olivier M, van Heerden R. Detecting manipulated smartphone data on Android and iOS devices. In: Venter H, Loock M, Coetzee M, Eloff M, Eloff J, editors. Information Security. Cham: Springer International Publishing; 2019. p. 89-103.
28. Zheng J, Tan YA, Zhang X, Liang C, Zhang C, Zheng J. .
29. Conlan K, Baggili I, Breitinger F. Anti-forensics: furthering digital forensic science through a new extended, granular taxonomy. Digital Investigation 2016;18:S66-75.
30. Mirza MM, Salamh FE, Karabiyik U. .
31. Karlsson KJ, Glisson WB. .
32. Azadegan S, Yu W, Liu H, Sistani M, Acharya S. .
33. Sporea I, Aziz B, McIntyre Z. On the availability of anti-forensic tools for smartphones. International Journal of Security 2012;6:58-64.
34. Asbeh S, Al-Sewadi H, Hammoudeh S, Hammoudeh A. Hex symbols algorithm for anti-forensic artifacts on android devices. IJACSA 2016;7:4.
35. Ceballos Delgado AA, Glisson WB, Grispos G, Choo KR. FADE: a forensic image generator for android device education. WIREs Forensic Science 2022;4:e1432.
36. Du X, Hargreaves C, Sheppard J, Scanlon M. TraceGen: user activity emulation for digital forensic test image generation. Forensic Science International: Digital Investigation 2021;38:301133.
37. Scanlon M, Du X, Lillis D. EviPlant: an efficient digital forensic challenge creation, manipulation and distribution solution. Digital Investigation 2017;20:S29-36.
39. Van Rossum G, Drake Jr FL. Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam; 1995. Available from: https://dl.acm.org/doi/10.5555/869369 [Last accessed on 28 Mar 2022].