REFERENCES

1. Evans D. The internet of things: How the next evolution of the internet is changing everything. Available from: https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf [Last accessed on 29 Sep 2020].

3. Alaybeyi SB, Perkins E, Contu R. Market Guide for IoT Security. Available from: https://www.gartner.com/en/documents/3465419/marKet-guide-for-iot-security [Last accessed on 29 Sep 2020].

4. Kaspersky. Financial Cyberthreats in 2018. Available from: https://securelist.com/financial-cyberthreats-in-2018/89788/ [Last accessed on 201903].

5. Avast TIT. Android apps on Google Play Store come with nasty surprise. Available from: https://blog.avast.com/adware-plagues-google-Play [Last accessed on 1 Jun 2019].

6. Hilton S. Dyn analysis summary of friday october 21 attack. Available from: https://dyn.com/blog/dyn-analysis-summary-of-friday-oc-tober-21-attack [Last accessed on 29 Sep 2020].

7. Tsiropoulou EE, Baras JS, Papavassiliou S, Qu G. On the mitigation of interference imposed by intruders in passive RFID networks. In: International Conference on Decision and Game Theory for Security New York, United States. Springer; 2016. pp. 62-80.

8. Vamvakas P, Tsiropoulou EE, Papavassiliou S. Exploiting prospect theory and risk-awareness to protect UAV-assisted network operation. EURASIP J Wireless Com Network 2019:286.

9. Albasir A, James RSR, Naik K, Nayak A. Using Deep Learning to Classify Power Consumption Signals of Wireless Devices: An Application to Cybersecurity. In: 2018 IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP) Calgary, Canada. IEEE; 2018. pp. 2032-6.

10. Khan H, Sehatbakhsh N, Nguyen L, et al. IDEA: Intrusion Detection through Electromagnetic-Signal Analysis for Critical Embedded and Cyber-Physical Systems. IEEE Trans Dependable Secure Comput 2019:1-1.

11. Khan H, Sehatbakhsh N, Nguyen L, Prvulovic M, Zajić A. Malware Detection in Embedded Systems Using Neural Network Model for Electromagnetic Side-Channel Signals. J Hardw Syst Secur 2019 2019:1-14.

12. Hoffmann J, Neumann S, Holz T. Mobile malware detection based on energy fingerprints—a dead end? In: International Workshop on Recent Advances in Intrusion Detection. EuroGP 2002: Proceedings of the 5th European Conference on Genetic Programming Rodney Bay, St. Lucia. Springer; 2013.

13. Bridges R, Hernández Jiménez J, Nichols J, Goseva-Popstojanova K, Prowell S. Towards Malware Detection via CPU Power Consumption: Data Collection Design and Analytics. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE) New York, United States. IEEE; 2018. pp. 1680-4.

14. Azmoodeh A, Dehghantanha A, Conti M, Choo KKR. Detecting crypto-ransomware in IoT networks based on energy consumption footprint. J Ambient Intell Human Comput 2017;9:1141-52.

15. Sanjab A, Saad W, Başar T. Prospect theory for enhanced cyber-physical security of drone delivery systems: A network interdiction game. In: 2017 IEEE International Conference on Communications (ICC) Paris, France. Berlin: IEEE; 2017. pp. 1-6.

16. Cvitić I, Vujić M, Husnjak S. Classification of Security Risks in the IoT Environment. in 26th DAAAM International Symposium on Intelligent Manufacturing and Automation Vienna, Austria. DAAAM International Vienna; 2015. pp. 0731-40.

17. Zubrow D. IEEE Standard Classification for Software Anomalies. IEEE Computer Society 2010:1-23.

18. Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey. ACM computing surveys (CSUR) 2009;41.

19. Zefferer T, Teufl P, Derler D, et al. Towards Secure Mobile Computing: Employing Power-Consumption Information to Detect Malware on Mobile Devices. Int journal on advances in software 2014;7.

20. Yang H, Tang R. Power consumption based android malware detection. J of Electrical and Computer Eng 2016. [DOI: https://doi.org/10.1155/2016/6860217]

21. Ayşan Aİ, Şen S. Api call and permission based mobile malware detection. 2015 23nd Signal Processing and Communications Applications Conference (SIU) Malatya, Turkey. IEEE; 2015. pp. 2400-3.

22. Jacoby GA, Marchany R, Davis N. Battery-based intrusion detection a first line of defense. Information Assurance Workshop, 2004. Proceedings from the Fifth Annual IEEE SMC New York, United States. IEEE; 2004. pp. 272-9.

23. Antunes J, Neves N. Using Behavioral Profiles to Detect Software Flaws in Network Servers. 2011 IEEE 22nd International Symposium on Software Reliability Engineering Hiroshima, Japan; 2011. pp. 1-10.

24. Tobiyama S, Yamaguchi Y, Shimada H, Ikuse T, Yagi T. Malware Detection with Deep Neural Network Using Process Behavior. In: 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC) Atlanta, United States. IEEE; 2016. pp. 577-82.

25. Nazari A, Sehatbakhsh N, Alam M, Zajic A, Prvulovic M. Eddie: Embased detection of deviations in program execution. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA) Toronto, Canada. IEEE; 2017. pp. 333-46.

26. Hoh B, Gruteser M, Xiong H, Alrabady A. Enhancing security and privacy in trafficmonitoring systems. IEEE Pervasive Computing 2006;5:38-46.

27. James R, Albasir A, Naik K, et al. A Power Signal Based Dynamic Approach to Detecting Anomalous Behavior in Wireless Devices. In: Proceedings of the 16th ACM Int. Symposium on Mobility Management and Wireless Access MobiWac’18 Montreal, Canada. ACM; 2018.

28. James R, Albasir A, Naik K, Dabbagh MY, Dash P, Zaman M. Detection of anomalous behavior of smartphones using signal processing and machine learning techniques. In: 2017 IEEE 28th Annual Int. Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) Windsor,Canada. IEEE; 2017.

29. Kim H, Smith J, Shin K. Detecting energy-greedy anomalies and mobile malware variants. In: Proceedings of the 6th international conference on Mobile systems, applications, and services Breckenridge, United States. ACM; 2008. pp. 239-52.

30. Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens C. DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket. In: Ndss; 2014; doi: 10.14722/ndss.2014.23247.

31. t Stroud F. Cryptomining Malware. Available from: https://www.webopedia.com/TERM/C/cryptomining-malware.html [Last accessed on 30 Oct 2019].

32. Zhang L, Tiwana B, Dick R, et al. Accurate online power estimation and automatic battery behavior based power model generation for smartphones. In: Hardware/Software Codesign and System Synthesis (CODES+ ISSS), 2010 IEEE/ACM/IFIP International Conference on Scottsdale, United States. IEEE; 2010.

33. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. science 2006;313:504-7.

34. Tagawa T, Tadokoro Y, Yairi T. Structured denoising autoencoder for fault detection and analysis. In: Proceedings of the Sixth Asian Conference on Machine Learning, Asian Conference on Machine Learning 2014. pp. 96-111.

35. Marchi E, Vesperini F, Weninger F, Eyben F, Squartini S, Schuller B. Non-linear prediction with LSTM recurrent neural networks for acoustic novelty detection. In: 2015 International Joint Conference on Neural Networks (IJCNN). IEEE 2015. pp. 1-7.

36. Kawaguchi Y, Endo T. How can we detect anomalies from subsampled audio signals? In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE 2017. pp. 1-6.

37. Hinton GE. A practical guide to training restricted Boltzmann machines. Springer; 2012. pp. 599-619.

38. Hinton GE. Deep belief networks. Scholarpedia 2009;4:5947. Revision #91189. [DOI: 10.4249/scholarpedia.5947]

39. Geman S, Geman D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans Pattern Anal Mach Intell 1984;PAMI6:721-41.

40. Daoud M, Mayo M. Using Swarm Optimization To Enhance Autoencoders Images. arXiv 1807.03346 [Preprint]. 2018. Available from: https://dblp.org/rec/bib/journals/corr/abs-1807-03346..

41. Smith LI. A tutorial on principal components analysis. Available from: http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf [Last accessed on 13 Oct 2020].

42. Dawson RMA, Shen Z, Furst DA, et al. Design of an Improved Pixel for a Polysilicon ActiveMatrix Organic LED Display. Available from: https://scholar.princeton.edu/sites/default/files/sturm/files/1998_dawson.soc_inf_disp_symp.design.w_cover.pdf [Last accessed on 13 Oct 2020].

43. Pedregosa F, et al. Scikitlearn: Machine Learning in Python. Available from: https://www.researchgate.net/publication/51969319_Scikit-learn_Machine_Learning_in_Python [Last accessed on 13 Oct 2020].

44. Minka TP. Automatic choice of dimensionality for PCA. In: Proceedings of the 13th International Conference on Neural Information Processing Systems MIT Press; 2000. pp. 577-583.

45. Schölkopf B, Williamson RC, Smola AJ, Shawe-Taylor J, Platt JC. Support vector method for novelty detection. MIT Press; 2000. p. 5828.

46. Mohamed Ar, Dahl GE, Hinton G. Acoustic modeling using deep belief networks. IEEE transactions on audio, speech, and language processing 2011;20:14-22.

47. Creusot C, Munawar A. Real-time small obstacle detection on highways using compressive RBM road reconstruction. In: 2015 IEEE Intelligent Vehicles Symposium (IV). IEEE 2015. pp. 162-7.

48. El-Alami FZ, El Mahdaouy A, El Alaoui SO, En-Nahnahi N. A Deep Autoencoder-Based Representation For Arabic Text Categorization. Journal of Information and Communication Technology 2020;19:381-98.

49. Shao H, Jiang H, Zhao H, Wang F. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis. Mechanical Systems and Signal Processing 2017;95:187-204.

50. La Polla M, Martinelli F, Sgandurra D. A survey on security for mobile devices. IEEE communications surveys & tutorials 2012;15:446-71.

51. Project P. Low Orbit Ion Cannon - An open source network stress tool. Available from: https://github.com/NewEraCracker/LOIC [Last accessed on 2019-8-30].

52. Martin ED, Kargaard J, Sutherland I. Raspberry Pi Malware: An Analysis of Cyberattacks Towards IoT Devices. In: 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT) Leeds, United Kingdom. IEEE; 2019. pp. 161-6.

53. Carneiro T, Medeiros Da Nóbrega RV, Nepomuceno T, Bian G, De Albuquerque VHC, Filho PPR. Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE Access 2018;6:61677-85.

54. Chollet F, et al. Keras. Available from: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm574058.htm [Last accessed on 2017-9-29].

55. Smola AJ, Schölkopf B. A Tutorial on Support Vector Regression. 2003.

56. Peña D, Prieto FJ. Multivariate outlier detection and robust covariance matrix estimation. Technometrics 2001;43:286-310.

57. Liu FT, Ting KM, Zhou ZH. Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining Pisa, Italy. IEEE; 2008. pp. 413-22.

Journal of Surveillance, Security and Safety
ISSN 2694-1015 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/