REFERENCES

1. Rafferty L, Hung PCK. Introduction to toy computing. Mobile Services for Toy Computing. Springer; 2015. pp. 1-7.

2. Frost JL, Wortham SC, Reifel RS. Play and child development. [S.l.]: Merrill: Prentice Hall; 2001.

3. Hung PCK, Iqbal F, Huang S, Melaisi M, Pang K. A Glance of Child’s Play Privacy in Smart Toys. In: Sun X, Liu A, Chao H, Bertino E, editors. Cloud Computing and Security. Cham: Springer International Publishing; 2016.

4. Intel Technology Journal. Developing smart toys - from idea to product. Available from: https://www.intel.com/content/dam/www/public/us/en/documents/research/2001-vol05-iss-4-intel-technology-journal.pdf. [Last accessed on 20 Feb 2021].

5. White DW. What is stem education and why is it important? In: Florida Association of Teacher Educators Journal; 2014. pp. 1-8. Available from: http://stembestpractice.com/what-is-stem-education-and-why-is-it-important/. [Last accessed on 20 Feb 2021].

6. Albuquerque ODP, Fantinato M, Kelner J, de Albuquerque AP. Privacy in smart toys: Risks and proposed solutions. Electronic Commerce Research and Applications 2020;39:100922.

7. Henson M, Taylor S. Memory encryption: A survey of existing techniques. ACM Computing Surveys 2014;46:1-26.

8. Guide to protecting the confidentiality of personally identifiable information (PII). National Institute of Standards and Technology, USA. Available from: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=904990. [Last accessed on 20 Feb 2021].

9. Juniper Research. Smart toy revenues to hit $2.8bn this year, driven by black Friday & Christmas holiday sales. Available from: https://www.juniperresearch.com/press/press-releases/smart-toy-revenues-to-hit-2-8bn-this-year. [Last accessed on 18 Apr 2020].

10. Shasha S, Mahmoud M, Mannan M, Youssef A. Playing with danger: A taxonomy and evaluation of threats to smart toys. IEEE Internet of Things Journal 2019;6:2986-3002.

11. Kopacek P. Supplemental ways for improving international stability SWIIS. IFAC Proceedings Volumes 2008;41:5257-61.

12. Linert J, Kopacek P. Humanoid robots Robotainment. IFAC-PapersOnLine 2018;51:220-5.

13. Liu Y, Nejat G. Robotic urban search and rescue: A survey from the control perspective. J Intell Robot Syst 2013;72:147-65.

14. Qppoers - Robobloq Co. Ltd. Available from: https://www.robobloq.com/product/qoopers. [Last accessed on 20 Feb 2021].

15. Babar S, Mahalle P, Stango A, Prasad N, Prasad R. Proposed security model and threat taxonomy for the Internet of Things (IoT). In: Meghanathan N, Boumerdassi S, Chaki N, Nagamalai D, editors. Recent Trends in Network Security and Applications. Berlin: Springer Berlin Heidelberg; 2010. pp. 420-9.

16. Berrehili FZ, Belmekki A. Privacy Preservation in the Internet of Things. Advances in Ubiquitous Networking 2. Singapore: Springer Singapore; 2017. pp. 163-175.

17. Chen L, Cooper P, Liu Q. Security in Bluetooth networks and communications. Wireless Network Security. Berlin: Springer Berlin Heidelberg; 2013. pp. 77-94.

18. Ihamäki P, Heljakka K. Smart, skilled and connected in the 21st century: education promises of the Internet of Toys (IoToys). Honolulu. 2018. pp. 5-8. Available from: https://www.researchgate.net/publication/322136955_Ihamaki_P_Heljakka_K_2018_Smart_Skilled_and_Connected_in_The_21st_Century_Educational_Promises_of_the_Internet_of_Toys_IoToys. [Last accessed on 20 Feb 2021].

19. Chen L, Ji J, Zhang Z. Wireless network security: theories and applications. Beijing Heidelberg: Higher Education Press; 2013.

20. Mascheroni G, Donell H. The Internet of Toys: A report on media and social discourses around young children and IoToys; DigiLitEY. 2017. Available from: http://digilitey.eu/wp-content/uploads/2017/01/IoToys-June-2017-reduced.pdf. [Last accessed on 20 Feb 2021].

21. Haataja K, Hyppönen K, Pasanen S, Toivanen P. Bluetooth Security Attacks: comparative analysis, attacks, and countermeasures. Heidelberg: Springer Berlin Heidelberg; 2013.

22. Lonzetta A, Cope P, Campbell J, Mohd B, Hayajneh T. Security vulnerabilities in Bluetooth technology as used in IoT. JSAN 2018;7:28.

23. Legg G. The bluejacking, bluesnarfing, bluebugging blues: Bluetooth faces perception of vulnerability. Available from: http://www.eetimes.com/document.asp?doc_id=1275730. [Last accessed on 20 Feb 2021].

24. Caldwell L, Ekerfelt S, Hornung A, Wu JY. The art of Bluedentistry: current security and privacy issues with Bluetooth devices. 2006. Available from: https://www.semanticscholar.org/paper/The-art-of-Bluedentistry-%3A-Current-security-and-Caldwell-Ekerfelt/f727a7ae513f7ce5035bf4459c17fd586dfaccfd#citing-papers. [Last accessed on 20 Feb 2021].

25. Huang Y, Hong P, Yu B. Design of Bluetooth DOS attacks detection and defense mechanism. 4th ed. China: IEEE International Conference on Computer and Communications (ICCC); 2018. pp. 1382-7.

26. Kostakos V. The privacy implications of Bluetooth. 2008. Available from: https://arxiv.org/abs/0804.3752. [Last accessed on 20 Feb 2021].

27. Hassan SS, Bibon SD, Hossain MS, Atiquzzaman M. Security threats in Bluetooth technology. Computers & Security 2018;74:308-22.

28. Sandhya S, Devi KAS. Contention for man-in-the-middle attacks in Bluetooth networks. International conference on computational intelligence and communication networks Mathura, India: IEEE; 2012. pp. 700-3.

29. Kügler D. “Man in the middle” attacks on Bluetooth. In: Wright R.N, editor. International Conference on Financial Cryptography Springer, Berlin, Heidelberg; . pp. 149-61.

30. ISO/IEC 27002:2013 Information technology - Security techniques - Code of practice for information security controls. The International Organization for Standardization (ISO), Edition 2, October 2013. Available from: https://www.iso.org/standard/54533.html. [Last accessed on 20 Feb 2021].

31. Securing/gattacker. GitHub. Available from: https://github.com/securing/gattacker. [Last accessed on 20 Feb 2021].

32. A Node.js BLE (Bluetooth Low Energy) central module. Available from: https://github.com/sandeepmistry/noble. [Last accessed on 20 Feb 2021].

33. A Node.js module for implementing BLE (Bluetooth Low Energy) peripherals. Available from: https://github.com/sandeepmistry/bleno. [Last accessed on 20 Feb 2021].

34. Adafruit Bluefruit LE Sniffer. Available from: https://www.adafruit.com/products/2269. [Last accessed on 20 Feb 2021].

35. Wireshark 2.1. Available from: https://www.wireshark.org/docs/wsdg_html_chunked/index.html. [Last accessed on 20 Feb 2021].

36. Lin C, He D, Huang X, Choo KR, Vasilakos AV. BSeIn: A blockchain-based secure mutual authentication with fine-grained access control system for industry 4.0. Journal of Network and Computer Applications 2018;116:42-52.

37. Ureten O, Serinken N. Wireless security through RF fingerprinting. Canadian Journal of Electrical and Computer Engineering 2007;32:27-33.

38. Jangirala S, Das AK, Vasilakos AV. Designing secure lightweight blockchain-enabled RFID-based authentication protocol for supply chains in 5G mobile edge computing environment. IEEE Transactions on Industrial Informatics 2020;16:7081-93.

39. Wazid M, Das AK, K VB, Vasilakos AV. LAM-CIoT: Lightweight authentication mechanism in cloud-based IoT environment. Journal of Network and Computer Application 2020;150:102496.

40. Das AK, Wazid M, Kumar N, Vasilakos AV, Rodrigues JPC. Biometrics-based privacy-preserving user authentication scheme for cloud-based industrial Internet of things deployment. IEEE Internet of Things Journal 2018;5:4900-13.

Journal of Surveillance, Security and Safety
ISSN 2694-1015 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/