REFERENCES

1. Dempe S, Dinh N, Dutta J, Pandit T. Simple bilevel programming and extensions. Math Program 2021;188:227-53.

2. von Stackelberg H. Market structure and equilibrium Heidelberg: Springer Berlin; 2010.

3. Fortuny-Amat J, McCarl B. A representation and economic interpretation of a two-level programming problem. J Oper Res Soc 1981;32:783-92.

4. Dempe S, Kalashnikov V, Pérez-Valdés GA, Kalashnykova N. Bilevel programming problems Heidelberg: Springer Berlin; 2015.

5. Wogrin S, Pineda S, Tejada-Arango DA. Applications of bilevel optimization in energy and electricity markets. In: Dempe S, Zemkoho A, editors. Bilevel optimization. Cham: Springer; 2020. pp. 139-68.

6. Yin Y. Multiobjective bilevel optimization for transportation planning and management problems. J Adv Transp 2002;36:93-105.

7. Liu R, Gao J, Zhang J, Meng D, Lin Z. Investigating bi-level optimization for learning and vision from a unified perspective: a survey and beyond. IEEE Trans Pattern Anal Mach Intell 2022;44:10045-67.

8. Eichfelder G. Multiobjective bilevel optimization. Math Program 2010;123:419-49.

9. Halter W, Mostaghim S. Bilevel optimization of multi-component chemical systems using particle swarm optimization. In: 2006 IEEE International Conference on Evolutionary Computation; 2006 Jul 16-21; Vancouver, Canada. IEEE; 2006. pp. 1240-47.

10. Deb K, Sinha A. Solving bilevel multi-objective optimization problems using evolutionary algorithms. In: Ehrgott M, Fonseca CM, Gandibleux X, Hao JK, Sevaux M, editors. Lecture notes in computer Science. Heidelberg: Springer Berlin; 2009. pp. 110-24.

11. Jia L, Wang Y. A genetic algorithm for multiobjective bilevel convex optimization problems. In: 2009 International Conference on Computational Intelligence and Security; 2009 Dec 11-14; Beijing, China. IEEE; 2009. pp. 98-102.

12. Li H, Zhang L. An efficient solution strategy for bilevel multiobjective optimization problems using multiobjective evolutionary algorithm. Soft Comput 2021;25:8241-61.

13. Jia L, Wang Y. Genetic algorithm based on primal and dual theory for solving multiobjective bilevel linear programming. In: 2011 IEEE Congress of Evolutionary Computation (CEC); 2011 Jun 5-8; New Orleans, LA, USA. IEEE; 2011. pp. 558-65.

14. Li H, Zhang Q, Chen Q, Zhang L, Jiao YC. Multiobjective differential evolution algorithm based on decomposition for a type of multiobjective bilevel programming problems. Knowl Based Syst 2016;107:271-88.

15. Pieume CO, Marcotte P, Fotso LP, Siarry P. Generating efficient solutions in bilevel multi-objective programming problems. Am J Oper Res 2013;3:289-98.

16. He Q, Lv Y. Particle swarm optimization based on smoothing approach for solving a class of bi-level multiobjective programming problem. Cybern Inf Technol 2017;17:59-74.

17. Alves MJ, Dempe S, Júdice JJ. Computing the Pareto frontier of a bi-objective bi-level linear problem using a multiobjective mixed-integer programming algorithm. Optimization 2010;61:335-58.

18. Sinha A, Malo P, Deb K. Approximated set-valued mapping approach for handling multiobjective bilevel problems. Comput Oper Res 2017;77:194-209.

19. Sinha A, Malo P, Deb K. Towards understanding bilevel multi-objective optimization with deterministic lower level decisions. In: Gaspar-Cunha A, Henggeler Antunes C, Coello C, editors. Lecture notes in computer science. Cham: Springer; 2015. pp. 426-43.

20. Cai X, Sun Q, Li Z, et al. Cooperative coevolution with knowledge-based dynamic variable decomposition for bilevel multiobjective optimization. IEEE Trans Evol Comput 2022;26:1553-65.

21. Islam MM, Singh HK, Ray T. A nested differential evolution based algorithm for solving multi-objective bilevel optimization problems. In: Ray T, Sarker R, Li X, editors. Lecture notes in computer science. Cham: Springer; 2016. pp. 101-12.

22. Sinha A, Deb K. Towards understanding evolutionary bilevel multi-objective optimization algorithm. IFAC Proc Vol 2009;42:338-43.

23. Deb K, Sinha A. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm. Evol Comput 2010;18:403-49.

24. Gu A, Lu S, Ram P, Weng TW. Min-max multi-objective bilevel optimization with applications in robust machine learning. arXiv. [Preprint. ] Mar 7, 2023[accessed 2023 Dec 21]. Available from: https://arxiv.org/abs/2203.01924.

25. Wang W, Liu HL. A multi-objective bilevel optimization evolutionary algorithm with local search. In: 2021 17th International Conference on Computational Intelligence and Security (CIS); 2021 Nov 19-22; Chengdu, China. IEEE; 2021. pp. 408-12.

26. Mejía-de-Dios JA, Rodríguez-Molina A, Mezura-Montes E. A novel evolutionary framework based on a family concept for solving multi-objective bilevel optimization problems. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. New York, NY, USA: Association for Computing Machinery; 2022. pp. 348–51.

27. Wang W, Liu HL, Shi H. A multi-objective bilevel optimisation evolutionary algorithm with dual populations lower-level search. Conn Sci 2022;34:1556-81.

28. Bosman PAN, Thierens D. The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans Evol Comput 2003;7:174-88.

29. Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 1999;3:257-71.

Journal of Smart Environments and Green Computing
ISSN 2767-6595 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/