REFERENCES
1. Cheng Y, Zhang N, Zhang B, Kang C, Xi W, Feng M. Low-carbon operation of multiple energy systems based on energy-carbon integrated prices. IEEE Trans Smart Grid 2020;11:1307-18.
2. Liu J, Sun W, Harrison GP. The economic and environmental impact of power to hydrogen/power to methane facilities on hybrid power-natural gas energy systems. Int J Hydrogen Energ 2020;45:20200-9.
3. Qiao J, Yin X, Wang Y, Lu Q, Tan L, Zhu L. A stator internal short-circuit fault protection method for turbo-generator based on instantaneous power oscillation ratio. IEEE Trans Energy Convers 2023;38:1903-12.
4. Qiao J, Yin X, Wang Y, Lu Q, Tan L, Zhu L. A rotor ground fault protection method based on injection principle for variable speed pumped storage generator-motor. IEEE Trans Power Delivery 2023;38:1159-68.
5. Li Z, Yu Q, Gong W, Zhang Z. Multi-objective Optimal Scheduling of Electricity-gas-heat Energy Hub Considering Fuzzy Chance Constraint. Proceedings of the CSU-EPSA 2021;33:49-56. (in Chinese).
6. Qiao J, Yin X, Wang Y, Tan L, Lu Q. A precise stator ground fault location method for large generators based on potential analysis of slot conductors. IEEE Trans Power Delivery 2022;37:5203-13.
7. Li Y, Liu W, Zhao J, et al. Optimal dispatch of combined electricity-gas-heat energy systems with power-to-gas devices and benefit analysis of wind power accommodation. Power Syst Technol 2016;40:3680-9. (in Chinese).
8. Wei Z, Huang Y, Gao H, Yue S. Joint economic scheduling of power-to-gas and thermoelectric decoupling CHP in regional energy internet. Power Syst Technol 2018;42:3512-20. (in Chinese).
9. Gabrielli P, Gazzani M, Mazzotti M. Electrochemical conversion technologies for optimal design of decentralized multi-energy systems: modeling framework and technology assessment. Appl Energy 2018;221:557-75.
10. Schlachtberger DP, Brown T, Schäfer M, Schramm S, Greiner M. Cost optimal scenarios of a future highly renewable European electricity system: exploring the influence of weather data, cost parameters and policy constraints. Energy 2018;163:100-14.
11. Liu J, Zhou C, Gao H, Guo Y, Zhu Y. A day-ahead economic dispatch optimization model of integrated electricity-natural gas system considering hydrogen-gas energy storage system in microgrid. Power Syst Technol 2018;42:170-9.
12. Bludszuweit H, Dominguez-Navarro JA, Llombart A. Statistical analysis of wind power forecast error. IEEE Trans Power Syst 2008;23:983-91.
13. Ai X, Liu X, Sun C. A fuzzy chance constrained decision model for unit commitment of power grid containing large-scale wind farm. Power Syst Technol 2011;35:202-7. Available from: http://www.alljournals.cn/view_abstract.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=6CDB4E49EF88F71A&jid=F7DABF51176EF1064E985A3940C43702&aid=E1559E56DEA172DEA692DFF15C083131&yid=9377ED8094509821. [Last accessed on 27 Sep 2023].
14. Xiao D, Wang C, Zeng P, Sun W, Duan J. A survey on power system flexibility and its evaluations. Power Syst Technol 2014;38:1569-76.
15. Zhao J, Zheng T, Litvinov E. A unified framework for defining and measuring flexibility in power system. IEEE Trans Power Syst 2016;31:339-47.
16. Wang L, Liu L, Zhang K, Xiong Z, Jiang C, Guan S. A review of power system flexible ramping product and market mechanism. Power Syst Technol 2022;46:442-52.
17. Jiang T, Yuan C, Zhang R, et al. Exploiting flexibility of combined-cycle gas turbines in power system unit commitment with natural gas transmission constraints and reserve scheduling. Int J Elec Power Energy Syst 2021;125:106460.
18. Zhang L, Luo Y, Luo H, et al. Scheduling of integrated heat and power system considering multiple timescale flexibility of CHP unit based on heat characteristic of DHS. Proceedings of the CSEE 2018;38:985-98.
19. Ma Z, Jia Y, Han X, Kang L, Ren H. Two-layer dispatch model of integrated energy system considering dynamic time-interval. Power Syst Technol 2022;46:1721-30. (in Chinese).
20. Tan Q, Ding Y. Optimal energy-saving dispatching model for thermal power considering carbon trading and its coping mode. Electric Power Automation Equipment 2018;38:175-81. (in Chinese).
21. Zhang X, Yan K, Lu Z, Zhong J. Scenario probability based multi-objective optimized low-carbon economic dispatching for power grid integrated with wind farms. Power Syst Technol 2014;38:1835-41. (in Chinese).
22. Zhou L, Zhou Y. Study on thermo-electric-hydrogen conversion mechanisms and synergistic operation on hydrogen fuel cell and electrochemical battery in energy flexible buildings. Energy Convers Manag 2023;277:116610.
23. Yang L, Sun Q, Zhang N, Li Y. Indirect multi-energy transactions of energy internet with deep reinforcement learning approach. IEEE Trans Power Syst 2022;37:4067-77.
24. Wang X, Liu R, Wang X, Hou Y, Bouffard F. A data-driven uncertainty quantification method for stochastic economic dispatch. IEEE Trans Power Syst 2022;37:812-5.
25. Li Y, Gao DW, Gao W, Zhang H, Zhou J. Double-mode energy management for multi-energy system via distributed dynamic event-triggered newton-raphson algorithm. IEEE Trans Smart Grid 2020;11:5339-56.
26. Wei Z, Zhang S, Sun G, Xu X, Chen S, Chen S. Carbon trading based low-carbon economic operation for integrated electricity and natural gas energy system. Automation Electr Power Syst 2016;40:9-16.
27. Cui Y, Yan S, Zhong W, Wang Z, Zhang P, Zhao Y. Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas. Power Syst Technol 2020;44:4254-64. (in Chinese).
28. Jiang C, Ai X. Integrated energy system operation optimization model considering uncertainty of multi-energy coupling units. Power Syst Technol 2019;43:2843-54. (in Chinese).