REFERENCES

1. Nielsen MA, Chuang IL. Quantum Computation and Quantum Information. Cambridge, UK: Cambridge University Press; 2000.

2. Starks SA, Kreinovich V. Environmentally-oriented processing of multi-spectral satellite images: new challenges for Bayesian methods. In: Erickson GJ, Rychert JT, Smith CR, editors. Maximum Entropy and Bayesian Methods Dordrecht: Kluwer; 1998. pp. 271-6.

3. Beck J. Data Processing under a Combination of Interval and Probabilistic Uncertainty and Its Application to Earth and Environmental Studies and Engineering.; 2004.

4. Kreinovich V, Longpré L, Starks SA, Xiang G, Beck J, Kandathi R, Nayak A, Ferson S, Hajagos J. Interval versions of statistical techniques, with applications to environmental analysis, bioinformatics, and privacy in statistical databases. Journal of Computational and Applied Mathematics 2007;199:418-23.

5. Jaimes A, Tweedie C, Magoč T, Kreinovich V, Ceberio M. Optimal sensor placement in environmental research: designing a sensor network under uncertainty. Proceedings of the 4th International Workshop on Reliable Engineering Computing REC’2010, Singapore, March 3-5, 2010:255-67.

6. Jaimes A, Tweedie C, Kreinovich V, Ceberio M. Scale-invariant approach to multi-criterion optimization under uncertainty, with applications to optimal sensor placement, in particular, to sensor placement in environmental research. International Journal of Reliability and Safety 2012;6:188-203.

7. Servin C, Ceberio M, Jaimes A, Tweedie C, Kreinovich V. How to describe and propagate uncertainty when processing time series: metrological and computational challenges, with potential applications to environmental studies In: Chen S-M, Pedrycz W, editors. Time Series Analysis, Modeling and Applications: A Computational Intelligence Perspective. Cham, Switzerland: Springer Verlag; 2013. pp. 279-99.

8. Brady J, Lerma O, Kreinovich V, Tweedie C. Toward computing an optimal trajectory for an environment-oriented Unmanned Aerial Vehicle (UAV) under uncertainty. Journal of Uncertain Systems 2015;9:84-94.

9. Kreinovich V, Ouncharoen R. Fuzzy (and interval) techniques in the age of big data: an overview with applications to environmental science, geosciences, engineering, and medicine. International Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems 2015;23:75-89.

10. Escarzaga SM, Tweedie C, Kosheleva O, Kreinovich V. .

11. Escarzaga SM, Tweedie C, Kosheleva O, Kreinovich V. How to predict nesting sites and how to measure shoreline erosion: fuzzy and probabilistic techniques for environment-related spatial data processing. In: Zadeh L, Yager RR, Shahbazova SN, Reformat M, Kreinovich V, editors. Recent Developments and New Direction in Soft Computing: Foundations and Applications. Cham, Switzerland: Springer Verlag’; 2018. pp. 595-604.

12. Hilbert D. Mathematische Probleme. Nachrichten von der Königl. Gesellschaft der Wiss. zu Göttingen 1900;253–297; English translation: Mathematical Problems, lecture delivered before the International Congress of Mathematics in Paris in. 1900. translated in Bull. Amer. Math, Soc 1902;8:437-79. reprinted in Browder, FE, editor, Mathematical Developments Arising from Hilbert’s Problems. Providence, Rhode Island: American Math. Soc; 1976

13. Dehn M. Über raumgleiche Polyeder. Nachr. Acad. Wiss. Gottingen Math.-Phys. Kl 1900:345-54.

14. Dehn M. Über den Rauminhalt. Mathematische Annalen 1901;3:465-78.

15. Sydler JP. Conditions nécessaires et suffisantes pour l’équivalence des polyèdres de l’espace euclidean à trois dimensions. Comment Math Helv 1965;40:43-80.

16. Boltianskii VG. Hilbert’s Third Problem. Washington, D.C.: V. H. Winston & Sons; 1978.

17. Boltianskii VG. Combinatorial geometry. In: Gamrkrelidze RV, editor. Algebra, Topology, and Geometry Moscow: VINITI Publ; 1981. pp. 209-74. (in Russian)

18. Neumann WD. Hilbert’s 3rd problem and invariants of 3-manifolds. Geom Topol Monogr 1998;1:383-411.

19. Kellerhals R. Old and new on Hilbert’s third problem In: Proceedings of the 9th Meeting of European Women in Mathematics (EWM), Loccum, Germany, 1999. Cairo: Hindawi Pub.; 2000. pp. 179-87.

20. Benko D. A new approach to Hilbert’s third problem. American Mathematical Monthly 2007;114:665-76.

21. Kosheleva O, Kreinovich V. Geombinatorics, computational complexity, and saving environment: let’s start. Geombinatorics 1994;3:90-9.

22. Turing AM. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 1936/37;42:230-65; A correction, ibid, 1937;43:544-46.

23. Kreinovich V, Lakeyev A, Rohn J, Kahl P. Computational Complexity and Feasibility of Data Processing and Interval Computations. Dordrecht: Kluwer; 1998.

24. Kosheleva OM. Axiomatization of volume in elementary geometry. Siberian Mathematical Journal 1980;21:106-114. (in Russian); English translation in Siberian Mathematical Journal 1980;21:78-85

25. Kosheleva O. Hilbert problems (almost) 100 years later (from the viewpoint of interval computations). Reliable Computing 1998;4:399-403.

26. Cooke DE, Duran R, Gates A, Kreinovich V. Geombinatoric problems of environmentally safe manufacturing and linear logic. Geombinatorics 1994;4:36-47.

27. Kreinovich V, Kosheleva O. An application of logic to combinatorial geometry: how many tetrahedra are equidecomposable with a cube? Mathematical Logic Quarterly 1994;40:31-34.

28. Courant R, Robbins H. Geometric constructions. The algebra of number fields. Ch. 3 in What Is Mathematics?: An Elementary Approach to Ideas and Methods. Oxford, England, UK: Oxford University Press; 1996. pp. 117-64.

29. Mohanty Y. Construction of a 3/4-ideal hyperbolic tetrahedron out of ideal tetrahedra. Discrete and Computational Geometry 2004;32:117-28.

30. Tarski A. A Decision Method for Elementary Algebra and Geometry. 2nd ed. Berkeley and Los Angeles; 1951. p. 63.

31. Basu S, Pollack R, Roy M-F. Algorithms in Real Algebraic Geometry. Berlin: Springer-Verlag; 2006.

32. Mishra B. Computational real algebraic geometry In: Handbook on Discreet and Computational Geometry. Boca Raton, Florida: CRC Press; 1997.

33. Kreinovich V. Equidecomposability (scissors congruence) of polyhedra in IR3 and IR4 is algorithmically decidable: Hilbert’s 3rd Problem revisited. Geombinatorics 2008;18:26-34.

34. Ge G. Algorithms Related to Multiplicative Representation of Algebraic Numbers.; 1993.

35. Ge G. Recognizing units in number fields. Mathematics of Computation 1994;63:377-387.

36. Babai L, Beals R, Cai J-Y, Ivanyos G, Luks EM. Multiplicative Equations Over Commuting Matrices, Princeton/Rutgers DIMACS Center. Technical Report, TR 95-32 1995.

37. Buchmann J, Eisenbrand F. On factor refinement in number fields. Mathematics Of Computation 1999;68:345-50.

38. Derksen H, Jeandel E, Koiran P. Quantum automata and algebraic groups. Journal of Symbolic Computation 2005;39:357-71.

39. Feynman R, Leighton R, Sands M. The Feynman Lectures on Physics. Boston, Massachusetts: Addison Wesley; 2005.

40. Thorne KS, Blandford RD. Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics. Princeton, New Jersey: Princeton University Press; 2017.

41. O. Galindo, L. Bokati, V. Kreinovich. .

42. Galindo O, Kreinovich V. For quantum and reversible computing, intervals are more appropriate than general sets, and fuzzy numbers than general fuzzy sets. In: Proceedings of the Joint 11th Conference of the European Society for Fuzzy Logic and Technology EUSFLAT’2019 and International Quantum Systems Association (IQSA) Workshop on Quantum Structures, Prague, Czech Republic, September 9-13 2019; doi: 10.2991/eusflat-19.2019.89.

43. Papadimitriou C. Computational Complexity. Reading, Massachusetts: Addison Welsey; 1994.

44. Kosheleva O, Zakharevich M, Kreinovich V. If many physicists are right and no physical theory is perfect, then by using physical observations, we can feasibly solve almost all instances of each NP-complete problem. Mathematical Structures and Modeling 2014;31:4-17.

45. Jalal-Kamali A, Nebesky O, Durcholz MH, Kreinovich V, Longpré L. Towards a ‘generic notion of genericity: from ‘typical’ and ‘random’ to meager, shy, etc. Journal of Uncertain Systems 2012;6:104-13.

46. Oxtoby JC. Measure and Category: A Survey of the Analogies between Topological and Measure Spaces. New York, Heidelberg, Berlin: Springer Verlag; 1980.

47. Lovelock J. Gaia: A New Look at Life on Earth. Oxford, UK: Oxford University Press; 2000.

48. Lenton TM, Daines SJ, Dyke JG, Nicholson AE, Wilkinson DM, Williams HT. Selection for Gaia across multiple scales. Trends in Ecology & Evolution 2018;33:633-645.

49. Alcabes ODN, Olson S, Abbot DS. Robustness of Gaian feedbacks to climate perturbations. Monthly Notices of the Royal Astronomical Society 2020;492:2572-2577.

50. Vakulenko SA, Sudakov I, Petrovskii SV, Lukichev D. Stability of a planetary climate system with the biosphere competing for resources. Physics Reviews E 2021;103. Paper 022202

Journal of Smart Environments and Green Computing
ISSN 2767-6595 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/