REFERENCES
1. Mashey JR. .
2. Lohr S. The origins of “big data”: An etymological detective story. New York Times 2013. Available from: https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/. [Last accessed on 30 Aug 2021].
3. Snijders C, Matzat U, Reips UD. “Big Data”: Big gaps of knowledge in the field of Internet. International Journal of Internet Science 2012;7:1-5.
4. Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Ullah Khan S. The rise of “big data” on cloud computing: Review and open research issues. Information Systems 2015;47:98-115.
5. Wang H, Xu Z, Fujita H, Liu S. Towards felicitous decision making: An overview on challenges and trends of Big Data. Information Sciences 2016;367-368:747-65.
6. Xie W, Xu Z, Ren Z, Viedma EH. Restoring incomplete PUMLPRs for evaluating the management way of online public opinion. Information Sciences 2020;516:72-88.
7. Wang H, Xu Z, Pedrycz W. An overview on the roles of fuzzy set techniques in big data processing: trends, challenges and opportunities. Knowledge-Based Systems 2017;118:15-30.
8. Xu Z, Yu D. A Bibliometrics analysis on big data research (2009-2018). J of Data, Inf and Manag 2019;1:3-15.
9. Cavanillas JM, Curry E, Wahlster W. . New horizons for a data-driven economy: a roadmap for usage and exploitation of big data in Europe. Switzerland: Springer; 2016.
10. Kong X, Feng M, Wang R. The current status and challenges of establishment and utilization of medical big data in China. European Geriatric Medicine 2015;6:515-7.
11. Karimi N, Samavi S, Soroushmehr S, Shirani S, Najarian K. Toward practical guideline for design of image compression algorithms for biomedical applications. Expert Systems with Applications 2016;56:360-7.
12. Hilbert M. Big data for development: a review of promises and challenges. Dev Policy Rev 2016;34:135-74.
13. James M, Michael C, Jaques B, et al. . Big Data: The next frontier for innovation, competition, and productivity. Washington: McKinsey Global Institute; 2011.
14. Huser V, Cimino JJ. Impending Challenges for the Use of Big Data. Int J Radiat Oncol Biol Phys 2016;95:890-4.
15. Sweet LE, Moulaison HL. Electronic Health Records Data and Metadata: Challenges for Big Data in the United States. Big Data 2013;1:245-51.
16. Lissovoy G. Big data meets the electronic medical record: a commentary on "identifying patients at increased risk for unplanned readmission". Med Care 2013;51:759-60.
17. Yang X, Zhang J, Chen S, Weissman S, Olatosi B, Li X. Comorbidity patterns among people living with HIV: a hierarchical clustering approach through integrated electronic health records data in South Carolina. AIDS Care 2021;33:594-606.
18. MacRae J, Darlow B, McBain L, et al. Accessing primary care Big Data: the development of a software algorithm to explore the rich content of consultation records. BMJ Open 2015;5:e008160.
19. Shen Y, Hsia T, Hsu C. Analysis of Electronic Health Records Based on Deep Learning with Natural Language Processing. Arab J Sci Eng 2021; doi: 10.1007/s13369-021-05596-6.
20. Fan J, Chen M, Luo J, et al. The prediction of asymptomatic carotid atherosclerosis with electronic health records: a comparative study of six machine learning models. BMC Med Inform Decis Mak 2021;21:115.
22. Maheswaranathan M, Chu P, Johannemann A, Criscione-Schreiber L, Clowse M, Leverenz DL. The impact of the COVID-19 pandemic and telemedicine implementation on practice patterns and electronic health record utilization in an academic rheumatology practice. J Clin Rheumatol 2021; doi: 10.1097/RHU.0000000000001751.
23. Liu J, Ma J, Wang J, et al. Comorbidity analysis according to sex and age in hypertension patients in China. Int J Med Sci 2016;13:99-107.
24. Genta RM, Sonnenberg A. Big data in gastroenterology research. Nat Rev Gastroenterol Hepatol 2014;11:386-90.
25. Ladha KS, Eikermann M. Codifying healthcare--big data and the issue of misclassification. BMC Anesthesiol 2015;15:179.
26. Andreu-Perez J, Poon CC, Merrifield RD, Wong ST, Yang GZ. Big data for health. IEEE J Biomed Health Inform 2015;19:1193-208.
27. Bairagi V, Sapkal A. Automated region-based hybrid compression for digital imaging and communications in medicine magnetic resonance imaging images for telemedicine applications. IET Sci Meas Technol 2012;6:247.
28. Plassard AJ, Kelly PD, Asman AJ, Kang H, Patel MB, Landman BA. Revealing latent value of clinically acquired CTs of traumatic brain injury through multi-atlas segmentation in a retrospective study of 1,003 with external cross-validation. Proc SPIE Int Soc Opt Eng 2015;9413:94130K.
29. Durand WM, Lafage R, Hamilton DK, et al. International Spine Study Group (ISSG). Artificial intelligence clustering of adult spinal deformity sagittal plane morphology predicts surgical characteristics, alignment, and outcomes. Eur Spine J 2021;30:2157-66.
30. Zhang DG, Li WB, Liu S, Zhang XD. Novel fusion computing method for bio-medical image of WSN based on spherical coordinate. J Vibroengineering 2016;18:522-38.
31. Xin G, Fan P. A lossless compression method for multi-component medical images based on big data mining. Sci Rep 2021;11:12372.
32. Kurc T, Qi X, Wang D, et al. Scalable analysis of Big pathology image data cohorts using efficient methods and high-performance computing strategies. BMC Bioinformatics 2015;16:399.
33. Ullah R, Arslan T. Parallel delay multiply and sum algorithm for microwave medical imaging using spark big data framework. Algorithms 2021;14:157.
34. Zhang D, Wang X, Song X. New medical image fusion approach with coding based on SCD in wireless sensor network. Journal of Electrical Engineering and Technology 2015;10:2384-92.
35. Huang X, Yi W, Wang J, Xu Z, Jiang Y. Hadoop-based medical image storage and access method for examination series. Mathematical Problems in Engineering 2021;2021:1-10.
36. Lakshmi C, Thenmozhi K, Rayappan JBB, Rajagopalan S, Amirtharajan R, Chidambaram N. Neural-assisted image-dependent encryption scheme for medical image cloud storage. Neural Comput & Applic 2021;33:6671-84.
37. Li W, Yu K, Feng C, Zhao D. SP-MIOV: A novel framework of shadow proxy based medical image online visualization in computing and storage resource restrained environments. Future Generation Computer Systems 2020;105:318-30.
38. Belle A, Thiagarajan R, Soroushmehr SM, Navidi F, Beard DA, Najarian K. Big data analytics in healthcare. Biomed Res Int 2015;2015:370194.
39. Flechet M, Grandas FG, Meyfroidt G. Informatics in neurocritical care: new ideas for Big Data. Curr Opin Crit Care 2016;22:87-93.
41. Ma YJ, Zhang Y, Dung OM, Li R, Zhang DQ. Health internet of things: recent applications and outlook. Journal of Internet Technology 2015;16:351-62.
42. Almagrabi AO, Ali R, Alghazzawi D, AlBarakati A, Khurshaid T. A reinforcement learning-based framework for crowdsourcing in massive health care Internet of Things. Big Data 2021; doi: 10.1089/big.2021.0058.
43. Kelly JT, Campbell KL, Gong E, Scuffham P. The Internet of Things: impact and implications for health care delivery. J Med Internet Res 2020;22:e20135.
44. Nagarajan SM, Deverajan GG, Chatterjee P, Alnumay W, Ghosh U. Effective task scheduling algorithm with deep learning for Internet of Health Things (IoHT) in sustainable smart cities. Sustainable Cities and Society 2021;71:102945.
45. Li F, Shankar A, Santhosh Kumar B. Fog-Internet of things-assisted multi-sensor intelligent monitoring model to analyse the physical health condition. Technol Health Care 2021; doi: 10.3233/THC-213009.
46. Teng KA, Longworth DL. Personalized healthcare in the era of value-based healthcare. Per Med 2013;10:285-93.
48. Bouslama A, Laaziz Y, Tali A, Eddabbah M. AWS and IoT for real-time remote medical monitoring. IJIE 2019;6:369.
50. Shaikh AR, Butte AJ, Schully SD, Dalton WS, Khoury MJ, Hesse BW. Collaborative biomedicine in the age of big data: the case of cancer. J Med Internet Res 2014;16:e101.
51. Manduchi E, Fu W, Romano JD, Ruberto S, Moore JH. Embedding covariate adjustments in tree-based automated machine learning for biomedical big data analyses. BMC Bioinformatics 2020;21:430.
52. Erdman AG, Keefe DF, Schiestl R. Grand challenge: applying regulatory science and big data to improve medical device innovation. IEEE Trans Biomed Eng 2013;60:700-6.
53. Bhuvaneshwar K, Belouali A, Singh V, et al. G-DOC Plus - an integrative bioinformatics platform for precision medicine. BMC Bioinformatics 2016;17:193.
55. Woodbridge J, Mortazavi B, Bui AA, Sarrafzadeh M. Improving biomedical signal search results in big data case-based reasoning environments. Pervasive Mob Comput 2016;28:69-80.
56. Chen H, Chen W, Liu C, Zhang L, Su J, Zhou X. Relational network for knowledge discovery through heterogeneous biomedical and clinical features. Sci Rep 2016;6:29915.
57. Hoffman S, Podgurski A. The use and misuse of biomedical data: is bigger really better? Am J Law Med 2013;39:497-538.
58. Ramos-Miguel A, Perez-Zaballos T, Perez D, Falconb JC, Ramosb A. Use of data mining to predict significant factors and benefits of bilateral cochlear implantation. Eur Arch Otorhinolaryngol 2015;272:3157-62.
59. Guo CH, Chen JF. Big data analytics in healthcare: data-driven methods for typical treatment pattern mining. J Syst Sci Syst Eng 2019;28:694-714.
60. Behadada O, Trovati M, Chikh M, Bessis N. Big data-based extraction of fuzzy partition rules for heart arrhythmia detection: a semi-automated approach: A SEMI-AUTOMATED APPROACH. Concurrency Computat : Pract Exper 2016;28:360-73.
61. Kitakaze M, Asakura M, Nakano A, Takashima S, Washio T. Data mining as a powerful tool for creating novel drugs in cardiovascular medicine: the importance of a “back-and-forth loop” between clinical data and basic research. Cardiovasc Drugs Ther 2015;29:309-15.
62. Boytcheva S, Angelova G, Angelov Z, Tcharaktchiev D. Text mining and big data analytics for retrospective analysis of clinical texts from outpatient care. Cybernetics and Information Technologies 2015;15:58-77.
64. Choi JK, Jeon KH, Won Y, Kim JJ. Application of big data analysis with decision tree for the foot disorder. Cluster Comput 2015;18:1399-404.
65. Beykikhoshk A, Arandjelović O, Phung D, Venkatesh S, Caelli T. Using Twitter to learn about the autism community. Soc Netw Anal Min 2015;5:22.
67. Ramos-Casals M, Brito-Zerón P, Kostov B, et al. Google-driven search for big data in autoimmune geoepidemiology: analysis of 394,827 patients with systemic autoimmune diseases. Autoimmun Rev 2015;14:670-9.
68. Bose I, Mahapatra RK. Business data mining - a machine learning perspective. Information & Management 2001;39:211-25.
69. Soriano-Valdez D, Pelaez-Ballestas I, Manrique de Lara A, Gastelum-Strozzi A. The basics of data, big data, and machine learning in clinical practice. Clin Rheumatol 2021;40:11-23.
71. Lin W, Dou W, Zhou Z, Liu C. A cloud-based framework for Home-diagnosis service over big medical data. Journal of Systems and Software 2015;102:192-206.
73. Rajabion L, Shaltooki AA, Taghikhah M, Ghasemi A, Badfar A. Healthcare big data processing mechanisms: the role of cloud computing. International Journal of Information Management 2019;49:271-89.
74. Sundharakumar K, Dhivya S, Mohanavalli S, Chander RV. Cloud based fuzzy healthcare system. Procedia Computer Science 2015;50:143-8.
77. Zhang Z. Big data and clinical research: focusing on the area of critical care medicine in mainland China. Quant Imaging Med Surg 2014;4:426-9.
78. Merelli I, Pérez-Sánchez H, Gesing S, D'Agostino D. Managing, analysing, and integrating big data in medical bioinformatics: open problems and future perspectives. Biomed Res Int 2014;2014:134023.
79. Satagopam V, Gu W, Eifes S, et al. Integration and visualization of translational medicine data for better understanding of human diseases. Big Data 2016;4:97-108.
80. Gligorijević V, Malod-Dognin N, Pržulj N. Integrative methods for analyzing big data in precision medicine. Proteomics 2016;16:741-58.
81. Mezghani E, Exposito E, Drira K, Da Silveira M, Pruski C. A semantic big data platform for integrating heterogeneous wearable data in healthcare. J Med Syst 2015;39:185.
82. Saleem M, Kamdar MR, Iqbal A, Sampath S, Deus HF, Ngonga Ngomo A. Big linked cancer data: Integrating linked TCGA and PubMed. Web Semant 2014;27-28:34-41.
83. Dhayne H, Haque R, Kilany R, Taher Y. In search of big medical data integration solutions - a comprehensive survey. IEEE Access 2019;7:91265-90.
84. Deng Z, Zhu X, Cheng D, Zong M, Zhang S. Efficient k NN classification algorithm for big data. Neurocomputing 2016;195:143-8.
85. Mei K, Peng J, Gao L, Zheng NN, Fan J. Hierarchical classification of large-scale patient records for automatic treatment stratification. IEEE J Biomed Health Inform 2015;19:1234-45.
86. Azar AT, Hassanien AE. Dimensionality reduction of medical big data using neural-fuzzy classifier. Soft Comput 2015;19:1115-27.
87. Li X, Jiao H, Li D. Intelligent medical heterogeneous big data set balanced clustering using deep learning. Pattern Recognition Letters 2020;138:548-55.
88. Reina ST, Zamorano MR, Bjørnerud A. . Towards an integrated semantic framework for neurological multidimensional data analysis. In: Ferrández Vicente JM, Álvarez-sánchez JR, de la Paz López F, Toledo-moreo FJ, Adeli H, editors. Artificial computation in biology and medicine. Cham: Springer International Publishing; 2015. p. 175-84.
90. Pérez A, Gojenola K, Casillas A, Oronoz M, Díaz de Ilarraza A. Computer aided classification of diagnostic terms in spanish. Expert Systems with Applications 2015;42:2949-58.
91. Gu J, Taylor CR. Practicing pathology in the era of big data and personalized medicine. Appl Immunohistochem Mol Morphol 2014;22:1-9.
92. Dilsizian SE, Siegel EL. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr Cardiol Rep 2014;16:441.
93. Shin O, Han C, Pae CU, Patkar AA. Precision medicine for psychopharmacology: a general introduction. Expert Rev Neurother 2016;16:831-9.
94. Chen Y, Elenee Argentinis JD, Weber G. IBM Watson: How cognitive computing can be applied to big data challenges in life sciences research. Clin Ther 2016;38:688-701.
95. Wang F. Adaptive semi-supervised recursive tree partitioning: The ART towards large scale patient indexing in personalized healthcare. J Biomed Inform 2015;55:41-54.
99. Noor AM, Holmberg L, Gillett C, Grigoriadis A. Big Data: the challenge for small research groups in the era of cancer genomics. Br J Cancer 2015;113:1405-12.
100. Issa AM, Marchant GE, Campos-Outcalt D. Big data in the era of precision medicine: big promise or big liability? Per Med 2016;13:283-5.
101. Wimmer H, Yoon VY, Sugumaran V. A multi-agent system to support evidence based medicine and clinical decision making via data sharing and data privacy. Decision Support Systems 2016;88:51-66.
102. Mostert M, Bredenoord AL, Biesaart MC, van Delden JJ. Big data in medical research and EU data protection law: challenges to the consent or anonymise approach. Eur J Hum Genet 2016;24:956-60.
103. Saraladevi B, Pazhaniraja N, Paul PV, Basha MS, Dhavachelvan P. Big Data and Hadoop-a Study in Security Perspective. Procedia Comput Sci 2015;50:596-601.
104. Gray EA, Thorpe JH. Comparative effectiveness research and big data: balancing potential with legal and ethical considerations. J Comp Eff Res 2015;4:61-74.
105. Dou W, Zhang X, Liu J, Chen J. HireSome-II: towards privacy-aware cross-cloud service composition for big data applications. IEEE Trans Parallel Distrib Syst 2015;26:455-66.
106. Taneja H, Kapil, Singh AK. Preserving privacy of patients based on re-identification risk. Procedia Comput Sci 2015;70:448-54.
109. Srivathsan M, Arjun KY. Health Monitoring System by Prognotive Computing Using Big Data Analytics. Procedia Comput Sci 2015;50:602-9.
110. Steinberg GB, Church BW, Mccall CJ, Scott AB, Kalis BP. Novel predictive models for metabolic syndrome risk: a “big data” analytic approach. Am J Manag Care 2014;20:221-8.
112. Velsko S, Bates T. A conceptual architecture for national biosurveillance: moving beyond situational awareness to enable digital detection of emerging threats. Health Secur 2016;14:189-201.
113. Milicchio F, Rose R, Bian J, Min J, Prosperi M. Visual programming for next-generation sequencing data analytics. BioData Min 2016;9:16.
114. Suresh S. Big data and predictive analytics applications in the care of children. Pediatr Clin North Am 2016;63:357-66.
115. Waldman SA, Terzic A. Big data transforms discovery-utilization therapeutics continuum. Clin Pharmacol Ther 2016;99:250-4.
116. Lu J, Zhou J, Ruan H, Luo G. Establishing a university library-based health information literacy service model in the age of big data. J Med Imaging Health Inform 2016;6:260-3.
117. Liang Y, Guo N, Xing C, Zhang Y, Guo C. . Chronic knowledge retrieval and smart health services based on big data. In: Zheng X, Zeng DD, Chen H, Leischow SJ, editors. Smart health. Cham: Springer International Publishing; 2016. p. 231-40.