REFERENCES

1. Oliveira W, Oliveira R, Castor F. “A study on the energy consumption of android app development approaches,”. , ;.

2. Corbalan L, Fernandez J, Cuitiño A, Delia L, Cáseres G, Thomas P, Pesado P. “Development frameworks for mobile devices: a comparative study about energy consumption,”. , ;.

3. McIntosh A, Hassan S, Hindle A. “What can android mobile app developers do about the energy consumption of machine learning?,”. Empirical Software Engineering, 2019;24:562-601.

4. Amsel N, Tomlinson B. “Green tracker: a tool for estimating the energy consumption of software,”. in CHI’10 Extended Abstracts on Human Factors in Computing Systems, 2010:3337-42.

5. Sinha A, Chandrakasan AP. “Jouletrack: A web based tool for software energy profiling,”. , ;.

6. García-Martín E, Rodrigues CF, Riley G, Grahn H. “Estimation of energy consumption in machine learning,”. Journal of Parallel and Distributed Computing 2019;134:75-88.

7. Pang C, Hindle A, Adams B, Hassan AE. “What do programmers know about software energy consumption?,”. IEEE Software, 2015;33:83-9.

8. Noureddine A, Rajan A. “Optimising energy consumption of design patterns,”. , ;.

9. Haynes RB. “Forming research questions,”. Journal of clinical epidemiology, 2006;59:881-6.

10. Kitchenham B. “Procedures for performing systematic reviews,”. Keele, UK, Keele University, 2004;33:1-26.

11. Cooke A, Smith D, Booth A. “Beyond PICO: the SPIDER tool for qualitative evidence synthesis,”. Qualitative health research, 2012;22:1435-43.

12. Felizardo KR, Mendes E, Kalinowski M, Souza ÉF, Vijaykumar NL. “Using forward snowballing to update systematic reviews in software engineering,”. , ;.

13. Wohlin C. “Guidelines for snowballing in systematic literature studies and a replication in software engineering,”. , ;.

14. Weinberg CR. “Toward a clearer definition of confounding,”. American journal of epidemiology, 1993;137:1-8.

15. Lim KH, Lee BD. “History-based dynamic estimation of energy consumption for mobile applications,”. , ;.

16. Callou G, Maciel P, Tavares E, Andrade E, Nogueira B, Araujo C, Cunha P. “Energy consumption and execution time estimation of embedded system applications,”. Microprocessors and Microsystems, 2011;35:426-40.

17. Rodriguez-Martinez M., Valdivia H., Seguel J., Greer M. “Estimating power/energy consumption in database servers,”. Procedia Computer Science, 2011;6:112-117.

18. Schubert S, Kostic D, Zwaenepoel W, Shin KG. “Profiling software for energy consumption,”. , ;.

19. Jagroep EA, van der Werf JM, Brinkkemper S, Procaccianti G, Lago P, Blom L, van Vliet R. “Software energy profiling: Comparing releases of a software product,”. , ;.

20. Olivier P, Boukhobza J, Senn E, Ouarnoughi H. “A methodology for estimating performance and power consumption of embedded flash file systems,”. ACM Transactions on Embedded Computing Systems (TECS), 2016;15:1-25.

21. Bazzaz M, Salehi M, Ejlali A. “An accurate instruction-level energy estimation model and tool for embedded systems,”. IEEE transactions on instrumentation and measurement, 2013;62:1927-34.

22. Chandan D. “An instruction-level energy estimation model for embedded systems,”. International Journal of Computer Applications, ;975:8887.

23. Liqat U, Georgiou K, Kerrison S, Lopez-Garcia P, Gallagher JP, Hermenegildo MV, Eder K. “Inferring parametric energy consumption functions at different software levels: Isa vs. llvm ir,”. , ;.

24. Kulkarni V, Udupi G. “A simplified method for instruction level energy estimation for embedded system,”. European Journal of Engineering and Technology Research, 2017;2:56-9.

25. Alsheikhy A, Han S, Ammar R. “Delay and power consumption estimation in embedded systems using hierarchical performance modeling,”. in 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 2015:34-9.

26. Ibrahim M, Rupp M, Fahmy H. “A precise high-level power consumption model for embedded systems software,”. EURASIP Journal on Embedded Systems, 2011;2011:1-14.

27. Atitallah YB, Mottin J, Hili N, Ducroux T, Godet-Bar G. “A power consumption estimation approach for embedded software design using trace analysis,”. , ;.

28. Höpfner H, Bunse C. “Energy aware data management on avr micro controller based systems,”. ACM SIGSOFT Software Engineering Notes, 2010;35:1-8.

29. Zecena I, Zong Z, Ge Jin T, Chen Z, Qiu M. “Energy consumption analysis of parallel sorting algorithms running on multicore systems,”. , ;.

30. Xu C, Qiao Y, Lee B, Murray N. “Energy consumption of mobile offloading for javascript applications,”. , ;.

31. Verma M, Chowdhary K. “An approach to save energy consumption for smartphone applicationdevelopment using suitable sorting algorithm.,”. International Journal of Advanced Research in Computer Science, 2017;8.

32. Verma M, Chowdhary K. “Analysis of energy consumption of sorting algorithms on smartphones,”. , ;.

33. Chandra TB, Verma P, Dwivedi AK. “Impact of programming languages on energy consumption for sorting algorithms,”. in Software Engineering, 2019:93-101.

34. Paul K, Kundu TK. “Android on mobile devices: An energy perspective,”. , ;.

35. Miettinen AP, Nurminen JK. “Energy efficiency of mobile clients in cloud computing.,”. HotCloud, 2010;10:19.

36. Ragona C, Granelli F, Fiandrino C, Kliazovich D, Bouvry P. “Energy-efficient computation offloading for wearable devices and smartphones in mobile cloud computing,”. , ;.

37. Cui Y, Song J, Ren K, Li M, Li Z, Ren Q, Zhang Y. “Software defined cooperative offloading for mobile cloudlets,”. IEEE/ACM Transactions on Networking, 2017;25:1746-60.

38. Tang Z, Li P, Guo S, Liao X, Jin H, Zhang D. “Selective traffic offloading on the fly: a machine learning approach,”. , ;.

39. Gottschalk M, Jelschen J, Winter A. “Saving energy on mobile devices by refactoring.,”. in EnviroInfo, 2014:437-44.

40. Malavolta I, Chinnappan K, Jasmontas L, Gupta S, Soltany KAK. “Evaluating the impact of caching on the energy consumption and performance of progressive web apps,”. , ;.

41. Schaarschmidt M, Uelschen M, Pulvermüller E, Westerkamp C. “Framework of software design patterns for energy-aware embedded systems,”. 2020; doi: 10.5220/0009351000620073.

42. Park JJ, Hong JE, Lee SH. “Investigation for software power consumption of code refactoring techniques,”. in SEKE, 2014; doi: 10.3745/KTSDE.2014.3.3.109.

43. Morales R, Saborido R, Khomh F, Chicano F, Antoniol G. “Anti-patterns and the energy efficiency of android applications,”. arXiv preprint arXiv:1610.05711, 2016.

44. Kim D, Hong JE, Yoon I, Lee SH. “Code refactoring techniques for reducing energy consumption in embedded computing environment,”. Cluster computing, 2018;21:1079-95.

45. Abdulsalam S, Lakomski D, Gu Q, Jin T, Zong Z. “Program energy efficiency: The impact of language, compiler and implementation choices,”. , ;.

46. Abdulsalam S, Zong Z, Gu Q, Qiu M. “Using the greenup, powerup, and speedup metrics to evaluate software energy efficiency,”. , ;.

47. Pereira R, Couto M, Ribeiro F, Rua R, Cunha J, Fernandes JP, Saraiva J. “Energy efficiency across programming languages: how do energy, time, and memory relate?,”. , ;.

48. Couto M, Pereira R, Ribeiro F, Rua R, Saraiva J. “Towards a green ranking for programming languages,”. , ;.

49. Chen X, Zong Z. “Android app energy efficiency: The impact of language, runtime, compiler, and implementation,”. , ;.

50. Oliveira W, Torres W, Castor F, Ximenes BH. “Native or web? a preliminary study on the energy consumption of android development models,”. , ;.

51. Hasan S, King Z, Hafiz M, Sayagh M, Adams B, Hindle A. “Energy profiles of java collections classes,”. , ;.

52. Pereira R, Couto M, Cunha J, Fernandes JP, Saraiva J. “The influence of the java collection framework on overall energy consumption,”. , ;.

53. Lane ND, Bhattacharya S, Georgiev P, Forlivesi C, Kawsar F. “An early resource characterization of deep learning on wearables, smartphones and internet-of-things devices,”. , ;.

54. Viegas E, Santin AO, Franca A, Jasinski R, Pedroni VA, Oliveira LS. “Towards an energy-efficient anomaly-based intrusion detection engine for embedded systems,”. IEEE Transactions on Computers, 2016;66:163-77.

55. Comito C, Talia D. “Evaluating and predicting energy consumption of data mining algorithms on mobile devices,”. , ;.

56. Ciman M, Gaggi O. “Measuring energy consumption of cross-platform frameworks for mobile applications,”. , ;.

57. Cristea V, Pattinson C, Kor A. “Energy consumption of mobile phones,”. 2015.

58. Ramírez RI, Rubio EH, Viveros AM. “Energy consumption in mobile computing,”. , ;.

59. Miranda P, Siekkinen M, Waris H. “Tls and energy consumption on a mobile device: A measurement study,”. in 2017 IEEE Symposium on Computers and Communications (ISCC), 2011:983-9.

60. Jiang W, Guo Z, Ma Y, Sang N. “Research on cryptographic algorithms for embedded real-time systems: A perspective of measurement-based analysis,”. , ;.

61. Ahmadi M, Khanezaei N, Manavi S, Moghaddam FF, Khodadadi T. “A comparative study of time management and energy consumption in mobile cloud computing,”. in 2014 IEEE 5th Control and System Graduate Research Colloquium, 2014:199-203.

62. Niu R, Song W, Liu Y. “An energy-efficient multisite offloading algorithm for mobile devices,”. International Journal of Distributed Sensor Networks, 2013;9:518518.

63. Rego PA, Trinta FA, Hasan MZ, de Souza JN. “Enhancing offloading systems with smart decisions, adaptive monitoring, and mobility support,”. Wireless Communications and Mobile Computing, 2019;2019.

64. Zhang K, Mao Y, Leng S, Zhao Q, Li L, Peng X, Pan L, Maharjan S, Zhang Y. “Energy-efficient offloading for mobile edge computing in 5g heterogeneous networks,”. IEEE access, 2016;4:5896-5907.

65. Jiang Z, Mao S. “Energy delay tradeoff in cloud offloading for multi-core mobile devices,”. IEEE Access, 2015;3:2306-16.

66. Geng Y, Yang Y, Cao G. “Energy-efficient computation offloading for multicore-based mobile devices,”. , ;.

67. Guo H, Liu J, Qin H. “Collaborative mobile edge computation offloading for iot over fiber-wireless networks,”. IEEE Network, 2018;32:66-71.

68. Liu K, Peng J, Li H, Zhang X, Liu W. “Multi-device task offloading with time-constraints for energy efficiency in mobile cloud computing,”. Future Generation Computer Systems, 2016;64:1-14.

69. Cao Y, Long C, Jiang T, Mao S. “Share communication and computation resources on mobile devices: A social awareness perspective,”. IEEE Wireless Communications, 2016;23:52-9.

70. Drolia U, Martins R, Tan J, Chheda A, Sanghavi M, Gandhi R, Narasimhan P. “The case for mobile edge-clouds,”. , ;.

71. Peng L. “Gscheduler: Reducing mobile device energy consumption,”. in 2016 4th Intl Conf on Applied Computing and Information Technology/3rd Intl Conf on Computational Science/Intelligence and Applied Informatics/1st Intl Conf on Big Data, Cloud Computing, Data Science & Engineering (ACIT-CSII-BCD), 2016:1-6.

72. Xia F, Ding F, Li J, Kong X, Yang LT, Ma J. “Phone2cloud: Exploiting computation offloading for energy saving on smartphones in mobile cloud computing,”. Information Systems Frontiers, 2014;16:95-111.

73. Huang D, Wang P, Niyato D. “A dynamic offloading algorithm for mobile computing,”. IEEE Transactions on Wireless Communications, 2012;11:1991-5.

74. Corral L, Georgiev AB, Sillitti A, Succi G. “A method for characterizing energy consumption in android smartphones,”. , ;.

75. Mishra SK, Mishra S, Bharti SK, Sahoo B, Puthal D, Kumar M. “Vm selection using dvfs technique to minimize energy consumption in cloud system,”. , ;.

76. Gourisaria MK, Patra S, Khilar P. “Energy saving task consolidation technique in cloud centers with resource utilization threshold,”. in Progress in Advanced Computing and Intelligent Engineering, 2018:655-66.

77. Mishra SK, Parida PP, Sahoo S, Sahoo B, Jena SK. “Improving energy usage in cloud computing using dvfs,”. in Progress in Advanced Computing and Intelligent Engineering, 2018:623-32.

78. Panda SK, Jana PK. “An energy-efficient task scheduling algorithm for heterogeneous cloud computing systems,”. Cluster Computing, 2019;22:509-27.

79. Ali A, Lu L, Zhu Y, Yu J. “An energy efficient algorithm for virtual machine allocation in cloud datacenters,”. , ;.

80. Chen H, Zhu X, Guo H, Zhu J, Qin X, Wu J. “Towards energy-efficient scheduling for real-time tasks under uncertain cloud computing environment”. Journal of Systems and Software 2015;99:20-35.

81. Mishra SK, Deswal R, Sahoo S, Sahoo B. “Improving energy consumption in cloud,”. , ;.

82. Panda SK, Jana PK. “An efficient energy saving task consolidation algorithm for cloud computing systems,”. , ;.

83. Hsu CH, Slagter KD, Chen SC, Chung YC. “Optimizing energy consumption with task consolidation in clouds,”. Information Sciences, 2014;258:452-62.

84. Xu H, Li R, Pan C, Li K. “Minimizing energy consumption with reliability goal on heterogeneous embedded systems,”. Journal of Parallel and Distributed Computing, 2019;127:44-57.

85. Tseng PH, Hsiu PC, Pan CC, Kuo TW. “User-centric energy-efficient scheduling on multi-core mobile devices,”. , ;.

86. Bezerra C, De Carvalho A, Borges D, Barbosa N, Pontes J, Tavares E. “Qoe and energy consumption evaluation of adaptive video streaming on mobile device,”. , ;.

87. Zhao B, Friderikos V. “Balancing transmission and storage cost for reducing energy consumption in mobile devices,”. , ;.

88. Hoffmann J, Neumann S, Holz T. “Mobile malware detection based on energy fingerprints—a dead end?,”. , ;.

89. Barbera MV, Kosta S, Mei A, Stefa J. “To offload or not to offload? the bandwidth and energy costs of mobile cloud computing,”. , ;.

90. Carroll A, Heiser G. “An analysis of power consumption in a smartphone.,”. , ;.

91. Lim YS, Chen YC, Nahum EM, Towsley D, Gibbens RJ. “How green is multipath tcp for mobile devices?,”. , ;.

92. Perrucci GP, Fitzek FH, Widmer J. “Survey on energy consumption entities on the smartphone platform,”. , ;.

93. Herwig V, Fischer R, Braun P. “Assessment of rest and websocket in regards to their energy consumption for mobile applications,”. , ;.

94. Javed A, Shahid MA, Sharif M, Yasmin M. “Energy consumption in mobile phones.,”. International Journal of Computer Network & Information Security, 2017;9.

Journal of Smart Environments and Green Computing
ISSN 2767-6595 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/