1. Kober T, Schiffer H, Densing M, Panos E. Global energy perspectives to 2060 - WEC’s world energy scenarios 2019. Energy Strateg Rev 2020;31:100523.
2. Cherubini F, Strømman AH. Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 2011;102:437-51.
3. Zeng X, Li M, Abd El-Hady D, et al. Commercialization of lithium battery technologies for electric vehicles. Adv Energy Mater 2019;9:1900161.
4. Arshad F, Lin J, Manurkar N, et al. Life cycle assessment of lithium-ion batteries: a critical review. Resour Conserv Recy 2022;180:106164.
5. Alfaro-Algaba M, Ramirez FJ. Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resour Conserv Recy 2020;154:104461.
6. Zhang X, Li Z, Luo L, Fan Y, Du Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 2022;238:121652.
7. Oryani B, Koo Y, Shafiee A, et al. Heterogeneous preferences for EVs: evidence from Iran. Renew Energ 2022;181:675-91.
8. Miao Y, Hynan P, von Jouanne A, Yokochi A. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 2019;12:1074.
9. Pathak P, Srivastava RR, Ojasvi. Assessment of legislation and practices for the sustainable management of waste electrical and electronic equipment in India. Renew Sust Energ Rev 2017;78:220-32.
10. Li J, Li L, Yang R, Jiao J. Assessment of the lifecycle carbon emission and energy consumption of lithium-ion power batteries recycling: a systematic review and meta-analysis. J Energy Storage 2023;65:107306.
11. Harper G, Sommerville R, Kendrick E, et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019;575:75-86.
12. Yang H, Hu X, Zhang G, et al. Life cycle assessment of secondary use and physical recycling of lithium-ion batteries retired from electric vehicles in China. Waste Manag 2024;178:168-75.
13. Beskin SM, Marin YB. Classification of granitic pegmatites and pegmatite-bearing granitic systems. Geol Ore Deposit 2018;60:578-86.
14. Kol’tsov VY, Yudina TB, Azarova YV, Semenov AA, Lizunov AV, Lesina IG. Comparative geological and mineral-petrological analysis of ore-bearing rock in lithium and beryllium deposits for modeling the behavior of ore minerals during processing. At Energy 2017;122:81-6.
15. Guo H, Kuang G, Li H, Pei W, Wang H. Enhanced lithium leaching from lepidolite in continuous tubular reactor using H2SO4+H2SiF6 as lixiviant. T Nonferr Metal Soc 2021;31:2165-73.
16. Schneider A, Schmidt H, Meven M, et al. Lithium extraction from the mineral zinnwaldite: Part I: effect of thermal treatment on properties and structure of zinnwaldite. Miner Eng 2017;111:55-67.
17. Kuai Y, Yao W, Ma H, Liu M, Gao Y, Guo R. Recovery lithium and potassium from lepidolite via potash calcination-leaching process. Miner Eng 2021;160:106643.
18. Luong VT, Kang DJ, An JW, Dao DA, Kim MJ, Tran T. Iron sulphate roasting for extraction of lithium from lepidolite. Hydrometallurgy 2014;141:8-16.
19. Karrech A, Azadi M, Elchalakani M, Shahin M, Seibi A. A review on methods for liberating lithium from pegmatities. Miner Eng 2020;145:106085.
20. Li H, Eksteen J, Kuang G. Recovery of lithium from mineral resources: state-of-the-art and perspectives - a review. Hydrometallurgy 2019;189:105129.
21. Bishimbayeva G, Zhumabayeva D, Zhandayev N, et al. Technological improvement lithium recovery methods from primary resources. Orient J Chem 2018;34:2762-9.
22. Gmar S, Chagnes A. Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources. Hydrometallurgy 2019;189:105124.
23. Gao T, Fan N, Chen W, Dai T. Lithium extraction from hard rock lithium ores (spodumene, lepidolite, zinnwaldite, petalite): technology, resources, environment and cost. China Geol 2023;6:137-53.
24. Guo H, Lv M, Kuang G, Wang H. Enhanced lithium extraction from α-spodumene with fluorine-based chemical method: a stepwise heat treatment for fluorine removal. Miner Eng 2021;174:107246.
25. Yan Q, Li X, Yin Z, et al. A novel process for extracting lithium from lepidolite. Hydrometallurgy 2012;121-4:54-9.
26. Yan Q, Li X, Wang Z, et al. Extraction of lithium from lepidolite using chlorination roasting-water leaching process. T Nonferr Metal Soc 2012;22:1753-9.
27. Barbosa L, Valente G, Orosco R, González J. Lithium extraction from β-spodumene through chlorination with chlorine gas. Miner Eng 2014;56:29-34.
28. Zhu ZH, Zhu CL, Wen XM, Zhu GQ, Ling BP. Progress in production process of lithium carbonate. Int J Salt Lake Res 2008;16:64-72. (in Chinese). Available from: http://ir.isl.ac.cn/handle/363002/861. [Last accessed on 24 Sep 2024]
29. Zhang X, Aldahri T, Tan X, Liu W, Zhang L, Tang S. Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting. Chem Eng Process 2020;147:107777.
30. Han Z, Wu S, Wu X, et al. Recycling of lithium and fluoride from LiF wastewater from LiF synthesis industry by solvent extraction. J Environ Chem Eng 2023;11:110557.
31. Liu C, Liu J. Coupled precipitation-ultrafiltration for treatment of high fluoride-content wastewater. J Taiwan Inst Chem E 2016;58:259-63.
32. Yang K, Li Y, Tian Z, Peng K, Lai Y. Removal of fluoride ions from ZnSO4 electrolyte by amorphous porous Al2O3 microfiber clusters: adsorption performance and mechanism. Hydrometallurgy 2020;197:105455.
33. Pan B, Xu J, Wu B, Li Z, Liu X. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles. Environ Sci Technol 2013;47:9347-54.
34. Plattner J, Naidu G, Wintgens T, Vigneswaran S, Kazner C. Fluoride removal from groundwater using direct contact membrane distillation (DCMD) and vacuum enhanced DCMD (VEDCMD). Sep Purif Technol 2017;180:125-32.
35. Alhassan SI, Huang L, He Y, Yan L, Wu B, Wang H. Fluoride removal from water using alumina and aluminum-based composites: a comprehensive review of progress. Crit Rev Env Sci Tec 2021;51:2051-85.
36. Tao W, Zhong H, Pan X, Wang P, Wang H, Huang L. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification. J Hazard Mater 2020;384:121373.
37. Nunes-Pereira J, Lima R, Choudhary G, et al. Highly efficient removal of fluoride from aqueous media through polymer composite membranes. Sep Purif Technol 2018;205:1-10.
38. Patel G, Pal U, Menon S. Removal of fluoride from aqueous solution by CaO nanoparticles. Sep Sci Technol 2009;44:2806-26.
39. Sommerville R, Shaw-stewart J, Goodship V, Rowson N, Kendrick E. A review of physical processes used in the safe recycling of lithium ion batteries. Sustain Mater Technol 2020;25:e00197.
40. Yu D, Huang Z, Makuza B, Guo X, Tian Q. Pretreatment options for the recycling of spent lithium-ion batteries: a comprehensive review. Miner Eng 2021;173:107218.
41. Rouhi H, Karola E, Serna-Guerrero R, Santasalo-Aarnio A. Voltage behavior in lithium-ion batteries after electrochemical discharge and its implications on the safety of recycling processes. J Energy Storage 2021;35:102323.
42. Wang Z, Yang H, Li Y, Wang G, Wang J. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods. J Hazard Mater 2019;379:120730.
43. Shaw-Stewart J, Alvarez-Reguera A, Greszta A, et al. Aqueous solution discharge of cylindrical lithium-ion cells. Sustain Mater Technol 2019;22:e00110.
44. Chen H, Gu S, Guo Y, et al. Leaching of cathode materials from spent lithium-ion batteries by using a mixture of ascorbic acid and HNO3. Hydrometallurgy 2021;205:105746.
45. Qian Y, Hu S, Zou X, et al. How electrolyte additives work in Li-ion batteries. Energy Storage Mater 2019;20:208-15.
46. Kochervinskii VV. The structure and properties of block poly(vinylidene fluoride) and systems based on it. Russ Chem Rev 1996;65:865-913.
47. Zhivulin V, Pesin L, Belenkov E, Greshnyakov V, Zlobina N, Brzhezinskaya M. Ageing of chemically modified poly(vinylidene fluoride) film: evolution of triple carbon-carbon bonds infrared absorption. Polym Degrad Stabil 2020;172:109059.
48. Zhang Y, Zhang X, Zhu P, Li W, Zhang L. Defluorination and directional conversion to light fuel by lithium synergistic vacuum catalytic co-pyrolysis for electrolyte and polyvinylidene fluoride in spent lithium-ion batteries. J Hazard Mater 2023;460:132445.
49. Yao L, Feng Y, Xi G. A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries. RSC Adv 2015;5:44107-14.
50. Lombardo G, Ebin B, Steenari B, Alemrajabi M, Karlsson I, Petranikova M. Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector. Resour Conserv Recy 2021;164:105142.
51. Kwabi DG, Ji Y, Aziz MJ. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem Rev 2020;120:6467-89.
52. Liu Y, Mu D, Dai Y, Ma Q, Zheng R, Dai C. Analysis on extraction behaviour of lithium-ion battery electrolyte solvents in supercritical CO2 by gas chromatography. Int J Electrochem Sci 2016;11:7594-604.
53. Amereller M, Schedlbauer T, Moosbauer D, et al. Electrolytes for lithium and lithium ion batteries: from synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Prog Solid State Ch 2014;42:39-56.
54. Mao Z, Song Y, Zhen AG, Sun W. Recycling of electrolyte from spent lithium-ion batteries. Next Sustain 2024;3:100015.
55. Tao R, Xing P, Li H, Sun Z, Wu Y. Recovery of spent LiCoO2 lithium-ion battery via environmentally friendly pyrolysis and hydrometallurgical leaching. Resour Conserv Recy 2022;176:105921.
56. Lei S, Sun W, Yang Y. Solvent extraction for recycling of spent lithium-ion batteries. J Hazard Mater 2022;424:127654.
57. Zhu Y, Ding Q, Zhao Y, Ai J, Li Y, Cao YC. Study on the process of harmless treatment of residual electrolyte in battery disassembly. Waste Manag Res 2020;38:1295-300.
58. Shi G, Wang J, Zhang S, et al. Green regeneration and high-value utilization technology of the electrolyte from spent lithium-ion batteries. Sep Purif Technol 2024;335:126144.
59. Beolchini F, Fonti V, Dell’Anno A, Rocchetti L, Vegliò F. Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Manag 2012;32:949-56.
60. Li J, Zhao R, He X, Liu H. Preparation of LiCoO2 cathode materials from spent lithium–ion batteries. Ionics 2009;15:111-3.
62. Zheng X, Zhu Z, Lin X, et al. A mini-review on metal recycling from spent lithium ion batteries. Engineering 2018;4:361-70.
63. Wang K, Li J, Mcdonald R, Browner R. Iron, aluminium and chromium co-removal from atmospheric nickel laterite leach solutions. Miner Eng 2018;116:35-45.
64. Li X, Zhang J, Song D, Song J, Zhang L. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. J Power Sources 2017;345:78-84.
65. Xu X, Hong T, Ma H, Yang J. Removal of fluoride from the mixed Ni-Co-Mn sulfate leach solution of spent lithium ion batteries using polyaluminum sulfate. Hydrometallurgy 2023;222:106171.
66. Xiao X, Hoogendoorn BW, Ma Y, et al. Ultrasound-assisted extraction of metals from lithium-ion batteries using natural organic acids. Green Chem 2021;23:8519-32.
67. Esmaeili M, Rastegar SO, Beigzadeh R, Gu T. Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2. Chemosphere 2020;254:126670.
68. He L, Shi L, Huang Q, et al. Extraction of alumina from aluminum dross by a non-hazardous alkaline sintering process: dissolution kinetics of alumina and silica from calcined materials. Sci Total Environ 2021;777:146123.
69. Álvarez E, Romar A, Fernández-Marcos ML. Fluorine immission to acid soil in the vicinity of an aluminium smelter in Galicia (NW Spain) and its influence on aluminium dynamics. J Soils Sediments 2013;13:72-81.
70. Rathi BS, Kumar PS, Rangasamy G, Badawi M, Aminabhavi TM. Membrane-based removal of fluoride from groundwater. Chem Eng J 2024;488:150880.
71. Chae Y, Kim D, An YJ. Effects of fluorine on crops, soil exoenzyme activities, and earthworms in terrestrial ecosystems. Ecotoxicol Environ Saf 2018;151:21-7.
72. Kessabi M, Assimi B, Braun JP. The effects of fluoride on animals and plants in the south Safi zone. Sci Total Environ 1984;38:63-8.
73. Suttie JW. Effects of inorganic fluorides on animals. J Air Pollut Control Assoc 1964;14:461-4.
74. Giri A, Bharti VK, Angmo K, Kalia S, Kumar B. Fluoride induced oxidative stress, immune system and apoptosis in animals: a review. IJB 2016;5:5174.
75. Nizam S, Virk HS, Sen IS. High levels of fluoride in groundwater from Northern parts of Indo-Gangetic plains reveals detrimental fluorosis health risks. Environ Adv 2022;8:100200.
76. Dehghani MH, Zarei A, Yousefi M, Asghari FB, Haghighat GA. Fluoride contamination in groundwater resources in the southern Iran and its related human health risks. Desalin Water Treat 2019;153:95-104.
77. Sahu BL, Banjare GR, Ramteke S, Patel KS, Matini L. Fluoride contamination of groundwater and toxicities in Dongargaon Block, Chhattisgarh, India. Expo Health 2017;9:143-56.
78. Yousefi M, Ghalehaskar S, Asghari FB, et al. Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran. Regul Toxicol Pharmacol 2019;107:104408.
79. Yousefi M, Ghoochani M, Hossein Mahvi A. Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. Ecotoxicol Environ Saf 2018;148:426-30.
80. Mohammadi AA, Yousefi M, Yaseri M, Jalilzadeh M, Mahvi AH. Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran. Sci Rep 2017;7:17300.
81. Yousefi M, Yaseri M, Nabizadeh R, et al. Association of hypertension, body mass index, and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas, Iran. Biol Trace Elem Res 2018;185:282-8.
82. Cao J, Chen Y, Chen J, Yan H, Li M, Wang J. Fluoride exposure changed the structure and the expressions of Y chromosome related genes in testes of mice. Chemosphere 2016;161:292-9.
83. Alexander BH, Olsen GW. Bladder cancer in perfluorooctanesulfonyl fluoride manufacturing workers. Ann Epidemiol 2007;17:471-8.
84. Yang CY, Cheng MF, Tsai SS, Hung CF. Fluoride in drinking water and cancer mortality in Taiwan. Environ Res 2000;82:189-93.
85. Ge D, Huang S, Cheng J, et al. A new environment-friendly polyferric sulfate-catalyzed ozonation process for sludge conditioning to achieve deep dewatering and simultaneous detoxification. J Clean Prod 2022;359:132049.
86. Yin C, Yu S, An B, et al. Fluorine recovery from etching wastewater through CaF2-based near-infrared photocatalyst synthesis. J Clean Prod 2018;175:267-75.
87. Dobó Z, Dinh T, Kulcsár T. A review on recycling of spent lithium-ion batteries. Energy Rep 2023;9:6362-95.
88. Zhou LF, Yang D, Du T, Gong H, Luo WB. The current process for the recycling of spent lithium ion batteries. Front Chem 2020;8:578044.
89. Yang K, Gong P, Tian Z, Lai Y, Li J. Recycling spent carbon cathode by a roasting method and its application in Li-ion batteries anodes. J Clean Prod 2020;261:121090.
90. Zhu Z, Xu L, Han Z, et al. Optimization of response surface methodology (RSM) for defluorination of spent carbon cathode (SCC) in fire-roasting aluminum electrolysis. Miner Eng 2022;182:107565.
91. Fujii T, Kashimura K, Tanaka H. Microwave sintering of fly ash containing unburnt carbon and sodium chloride. J Hazard Mater 2019;369:318-23.
92. Liu X, Bouxin FP, Fan J, Budarin VL, Hu C, Clark JH. Microwave-assisted catalytic depolymerization of lignin from birch sawdust to produce phenolic monomers utilizing a hydrogen-free strategy. J Hazard Mater 2021;402:123490.
93. Zhu Z, Xu L, Han Z, et al. Defluorination study of spent carbon cathode by microwave high-temperature roasting. J Environ Manage 2022;302:114028.
94. Dong L, Jiao F, Liu W, Wang C, Wang D, Qin W. A novel approach for extracting lithium from overhaul slag by low temperature roasting - water leaching. Chem Eng J 2024;481:148571.
95. Su F, Zhou X, Liu X, et al. Efficient recovery of valuable metals from spent Lithium-ion batteries by pyrite method with hydrometallurgy process. Chem Eng J 2023;455:140914.
96. Xi F, Li S, Ma W, Chen Z, Wei K, Wu J. A review of hydrometallurgy techniques for the removal of impurities from metallurgical-grade silicon. Hydrometallurgy 2021;201:105553.
97. Lisbona D, Steel K. Recovery of fluoride values from spent pot-lining: precipitation of an aluminium hydroxyfluoride hydrate product. Sep Purif Technol 2008;61:182-92.
98. Lisbona DF, Somerfield C, Steel KM. Leaching of spent pot-lining with aluminium nitrate and nitric acid: effect of reaction conditions and thermodynamic modelling of solution speciation. Hydrometallurgy 2013;134-5:132-43.
99. Wu S, Tao W, Han W, et al. Hydrometallurgical stepwise separation of alumina and recovery of aluminum fluoride from waste anode cover material of aluminum electrolysis. Miner Eng 2022;186:107740.
100. Nie Y, Guo X, Guo Z, Tang J, Xiao X, Xin L. Defluorination of spent pot lining from aluminum electrolysis using acidic iron-containing solution. Hydrometallurgy 2020;194:105319.
101. Tao W, Yang J, Chen L, et al. Environmentally friendly and efficient green recovery of fluoride from waste aluminum electrolytic sediment using Al2O3. Sep Purif Technol 2023;317:123934.
102. Yao Z, Zhong Q, Xiao J, Ye S, Tang L, Zhang Z. An environmental-friendly process for dissociating toxic substances and recovering valuable components from spent carbon cathode. J Hazard Mater 2021;404:124120.
103. Yao Z, Xiao J, Mao Q, et al. Detoxification and recovery of spent carbon cathodes via NaOH–Na2CO3 binary molten salt roasting - water leaching: toward a circular economy for hazardous solid waste from aluminum electrolysis. ACS Sustainable Chem Eng 2020;8:16912-23.
104. Li H, Huang Y, Yang X, Jiang Z, Yang Z. Approach to the management of magnesium slag via the production of Portland cement clinker. J Mater Cycles Waste Manag 2018;20:1701-9.
105. Gao X, Yao X, Yang T, Zhou S, Wei H, Zhang Z. Calcium carbide residue as auxiliary activator for one-part sodium carbonate-activated slag cements: compressive strength, phase assemblage and environmental benefits. Constr Build Mater 2021;308:125015.
106. Xie G, Suo Y, Liu L, et al. Mechanical grinding activation of modified magnesium slag and its use as backfilling cementitious material. Case Stud Constr Mat 2023;18:e01778.
107. Ji G, Peng X, Wang S, et al. Influence of magnesium slag as a mineral admixture on the performance of concrete. Constr Build Mater 2021;295:123619.
108. Zhu P, Chen Y, Wang LY, et al. Preparation of anorthite ceramic using mining tailings and calcium fluoride sludge. Can Metall Quart 2013;52:190-8.
109. Zhu P, Cao Z, Ye Y, et al. Reuse of hazardous calcium fluoride sludge from the integrated circuit industry. Waste Manag Res 2013;31:1154-9.
110. Zhu P, Cao ZB, Wang LY, et al. Recycling of calcium fluoride sludge as ceramic material using low temperature sintering technology. J Mater Cycles Waste Manag 2014;16:156-61.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.