REFERENCES

1. Kober T, Schiffer H, Densing M, Panos E. Global energy perspectives to 2060 - WEC’s world energy scenarios 2019. Energy Strateg Rev 2020;31:100523.

2. Cherubini F, Strømman AH. Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 2011;102:437-51.

3. Zeng X, Li M, Abd El-Hady D, et al. Commercialization of lithium battery technologies for electric vehicles. Adv Energy Mater 2019;9:1900161.

4. Arshad F, Lin J, Manurkar N, et al. Life cycle assessment of lithium-ion batteries: a critical review. Resour Conserv Recy 2022;180:106164.

5. Alfaro-Algaba M, Ramirez FJ. Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resour Conserv Recy 2020;154:104461.

6. Zhang X, Li Z, Luo L, Fan Y, Du Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 2022;238:121652.

7. Oryani B, Koo Y, Shafiee A, et al. Heterogeneous preferences for EVs: evidence from Iran. Renew Energ 2022;181:675-91.

8. Miao Y, Hynan P, von Jouanne A, Yokochi A. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 2019;12:1074.

9. Pathak P, Srivastava RR, Ojasvi. Assessment of legislation and practices for the sustainable management of waste electrical and electronic equipment in India. Renew Sust Energ Rev 2017;78:220-32.

10. Li J, Li L, Yang R, Jiao J. Assessment of the lifecycle carbon emission and energy consumption of lithium-ion power batteries recycling: a systematic review and meta-analysis. J Energy Storage 2023;65:107306.

11. Harper G, Sommerville R, Kendrick E, et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019;575:75-86.

12. Yang H, Hu X, Zhang G, et al. Life cycle assessment of secondary use and physical recycling of lithium-ion batteries retired from electric vehicles in China. Waste Manag 2024;178:168-75.

13. Beskin SM, Marin YB. Classification of granitic pegmatites and pegmatite-bearing granitic systems. Geol Ore Deposit 2018;60:578-86.

14. Kol’tsov VY, Yudina TB, Azarova YV, Semenov AA, Lizunov AV, Lesina IG. Comparative geological and mineral-petrological analysis of ore-bearing rock in lithium and beryllium deposits for modeling the behavior of ore minerals during processing. At Energy 2017;122:81-6.

15. Guo H, Kuang G, Li H, Pei W, Wang H. Enhanced lithium leaching from lepidolite in continuous tubular reactor using H2SO4+H2SiF6 as lixiviant. T Nonferr Metal Soc 2021;31:2165-73.

16. Schneider A, Schmidt H, Meven M, et al. Lithium extraction from the mineral zinnwaldite: Part I: effect of thermal treatment on properties and structure of zinnwaldite. Miner Eng 2017;111:55-67.

17. Kuai Y, Yao W, Ma H, Liu M, Gao Y, Guo R. Recovery lithium and potassium from lepidolite via potash calcination-leaching process. Miner Eng 2021;160:106643.

18. Luong VT, Kang DJ, An JW, Dao DA, Kim MJ, Tran T. Iron sulphate roasting for extraction of lithium from lepidolite. Hydrometallurgy 2014;141:8-16.

19. Karrech A, Azadi M, Elchalakani M, Shahin M, Seibi A. A review on methods for liberating lithium from pegmatities. Miner Eng 2020;145:106085.

20. Li H, Eksteen J, Kuang G. Recovery of lithium from mineral resources: state-of-the-art and perspectives - a review. Hydrometallurgy 2019;189:105129.

21. Bishimbayeva G, Zhumabayeva D, Zhandayev N, et al. Technological improvement lithium recovery methods from primary resources. Orient J Chem 2018;34:2762-9.

22. Gmar S, Chagnes A. Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources. Hydrometallurgy 2019;189:105124.

23. Gao T, Fan N, Chen W, Dai T. Lithium extraction from hard rock lithium ores (spodumene, lepidolite, zinnwaldite, petalite): technology, resources, environment and cost. China Geol 2023;6:137-53.

24. Guo H, Lv M, Kuang G, Wang H. Enhanced lithium extraction from α-spodumene with fluorine-based chemical method: a stepwise heat treatment for fluorine removal. Miner Eng 2021;174:107246.

25. Yan Q, Li X, Yin Z, et al. A novel process for extracting lithium from lepidolite. Hydrometallurgy 2012;121-4:54-9.

26. Yan Q, Li X, Wang Z, et al. Extraction of lithium from lepidolite using chlorination roasting-water leaching process. T Nonferr Metal Soc 2012;22:1753-9.

27. Barbosa L, Valente G, Orosco R, González J. Lithium extraction from β-spodumene through chlorination with chlorine gas. Miner Eng 2014;56:29-34.

28. Zhu ZH, Zhu CL, Wen XM, Zhu GQ, Ling BP. Progress in production process of lithium carbonate. Int J Salt Lake Res 2008;16:64-72. (in Chinese). Available from: http://ir.isl.ac.cn/handle/363002/861. [Last accessed on 24 Sep 2024]

29. Zhang X, Aldahri T, Tan X, Liu W, Zhang L, Tang S. Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting. Chem Eng Process 2020;147:107777.

30. Han Z, Wu S, Wu X, et al. Recycling of lithium and fluoride from LiF wastewater from LiF synthesis industry by solvent extraction. J Environ Chem Eng 2023;11:110557.

31. Liu C, Liu J. Coupled precipitation-ultrafiltration for treatment of high fluoride-content wastewater. J Taiwan Inst Chem E 2016;58:259-63.

32. Yang K, Li Y, Tian Z, Peng K, Lai Y. Removal of fluoride ions from ZnSO4 electrolyte by amorphous porous Al2O3 microfiber clusters: adsorption performance and mechanism. Hydrometallurgy 2020;197:105455.

33. Pan B, Xu J, Wu B, Li Z, Liu X. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles. Environ Sci Technol 2013;47:9347-54.

34. Plattner J, Naidu G, Wintgens T, Vigneswaran S, Kazner C. Fluoride removal from groundwater using direct contact membrane distillation (DCMD) and vacuum enhanced DCMD (VEDCMD). Sep Purif Technol 2017;180:125-32.

35. Alhassan SI, Huang L, He Y, Yan L, Wu B, Wang H. Fluoride removal from water using alumina and aluminum-based composites: a comprehensive review of progress. Crit Rev Env Sci Tec 2021;51:2051-85.

36. Tao W, Zhong H, Pan X, Wang P, Wang H, Huang L. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification. J Hazard Mater 2020;384:121373.

37. Nunes-Pereira J, Lima R, Choudhary G, et al. Highly efficient removal of fluoride from aqueous media through polymer composite membranes. Sep Purif Technol 2018;205:1-10.

38. Patel G, Pal U, Menon S. Removal of fluoride from aqueous solution by CaO nanoparticles. Sep Sci Technol 2009;44:2806-26.

39. Sommerville R, Shaw-stewart J, Goodship V, Rowson N, Kendrick E. A review of physical processes used in the safe recycling of lithium ion batteries. Sustain Mater Technol 2020;25:e00197.

40. Yu D, Huang Z, Makuza B, Guo X, Tian Q. Pretreatment options for the recycling of spent lithium-ion batteries: a comprehensive review. Miner Eng 2021;173:107218.

41. Rouhi H, Karola E, Serna-Guerrero R, Santasalo-Aarnio A. Voltage behavior in lithium-ion batteries after electrochemical discharge and its implications on the safety of recycling processes. J Energy Storage 2021;35:102323.

42. Wang Z, Yang H, Li Y, Wang G, Wang J. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods. J Hazard Mater 2019;379:120730.

43. Shaw-Stewart J, Alvarez-Reguera A, Greszta A, et al. Aqueous solution discharge of cylindrical lithium-ion cells. Sustain Mater Technol 2019;22:e00110.

44. Chen H, Gu S, Guo Y, et al. Leaching of cathode materials from spent lithium-ion batteries by using a mixture of ascorbic acid and HNO3. Hydrometallurgy 2021;205:105746.

45. Qian Y, Hu S, Zou X, et al. How electrolyte additives work in Li-ion batteries. Energy Storage Mater 2019;20:208-15.

46. Kochervinskii VV. The structure and properties of block poly(vinylidene fluoride) and systems based on it. Russ Chem Rev 1996;65:865-913.

47. Zhivulin V, Pesin L, Belenkov E, Greshnyakov V, Zlobina N, Brzhezinskaya M. Ageing of chemically modified poly(vinylidene fluoride) film: evolution of triple carbon-carbon bonds infrared absorption. Polym Degrad Stabil 2020;172:109059.

48. Zhang Y, Zhang X, Zhu P, Li W, Zhang L. Defluorination and directional conversion to light fuel by lithium synergistic vacuum catalytic co-pyrolysis for electrolyte and polyvinylidene fluoride in spent lithium-ion batteries. J Hazard Mater 2023;460:132445.

49. Yao L, Feng Y, Xi G. A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries. RSC Adv 2015;5:44107-14.

50. Lombardo G, Ebin B, Steenari B, Alemrajabi M, Karlsson I, Petranikova M. Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector. Resour Conserv Recy 2021;164:105142.

51. Kwabi DG, Ji Y, Aziz MJ. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem Rev 2020;120:6467-89.

52. Liu Y, Mu D, Dai Y, Ma Q, Zheng R, Dai C. Analysis on extraction behaviour of lithium-ion battery electrolyte solvents in supercritical CO2 by gas chromatography. Int J Electrochem Sci 2016;11:7594-604.

53. Amereller M, Schedlbauer T, Moosbauer D, et al. Electrolytes for lithium and lithium ion batteries: from synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Prog Solid State Ch 2014;42:39-56.

54. Mao Z, Song Y, Zhen AG, Sun W. Recycling of electrolyte from spent lithium-ion batteries. Next Sustain 2024;3:100015.

55. Tao R, Xing P, Li H, Sun Z, Wu Y. Recovery of spent LiCoO2 lithium-ion battery via environmentally friendly pyrolysis and hydrometallurgical leaching. Resour Conserv Recy 2022;176:105921.

56. Lei S, Sun W, Yang Y. Solvent extraction for recycling of spent lithium-ion batteries. J Hazard Mater 2022;424:127654.

57. Zhu Y, Ding Q, Zhao Y, Ai J, Li Y, Cao YC. Study on the process of harmless treatment of residual electrolyte in battery disassembly. Waste Manag Res 2020;38:1295-300.

58. Shi G, Wang J, Zhang S, et al. Green regeneration and high-value utilization technology of the electrolyte from spent lithium-ion batteries. Sep Purif Technol 2024;335:126144.

59. Beolchini F, Fonti V, Dell’Anno A, Rocchetti L, Vegliò F. Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Manag 2012;32:949-56.

60. Li J, Zhao R, He X, Liu H. Preparation of LiCoO2 cathode materials from spent lithium–ion batteries. Ionics 2009;15:111-3.

61. Zhao YJ, Sun YC, Ji CW, et al. A kind of waste and old lithium ionic cell electrolyte recovery and treatment method. Available from: https://patents.google.com/patent/CN103825065B/en. [Last accessed on 24 Sep 2024].

62. Zheng X, Zhu Z, Lin X, et al. A mini-review on metal recycling from spent lithium ion batteries. Engineering 2018;4:361-70.

63. Wang K, Li J, Mcdonald R, Browner R. Iron, aluminium and chromium co-removal from atmospheric nickel laterite leach solutions. Miner Eng 2018;116:35-45.

64. Li X, Zhang J, Song D, Song J, Zhang L. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. J Power Sources 2017;345:78-84.

65. Xu X, Hong T, Ma H, Yang J. Removal of fluoride from the mixed Ni-Co-Mn sulfate leach solution of spent lithium ion batteries using polyaluminum sulfate. Hydrometallurgy 2023;222:106171.

66. Xiao X, Hoogendoorn BW, Ma Y, et al. Ultrasound-assisted extraction of metals from lithium-ion batteries using natural organic acids. Green Chem 2021;23:8519-32.

67. Esmaeili M, Rastegar SO, Beigzadeh R, Gu T. Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2. Chemosphere 2020;254:126670.

68. He L, Shi L, Huang Q, et al. Extraction of alumina from aluminum dross by a non-hazardous alkaline sintering process: dissolution kinetics of alumina and silica from calcined materials. Sci Total Environ 2021;777:146123.

69. Álvarez E, Romar A, Fernández-Marcos ML. Fluorine immission to acid soil in the vicinity of an aluminium smelter in Galicia (NW Spain) and its influence on aluminium dynamics. J Soils Sediments 2013;13:72-81.

70. Rathi BS, Kumar PS, Rangasamy G, Badawi M, Aminabhavi TM. Membrane-based removal of fluoride from groundwater. Chem Eng J 2024;488:150880.

71. Chae Y, Kim D, An YJ. Effects of fluorine on crops, soil exoenzyme activities, and earthworms in terrestrial ecosystems. Ecotoxicol Environ Saf 2018;151:21-7.

72. Kessabi M, Assimi B, Braun JP. The effects of fluoride on animals and plants in the south Safi zone. Sci Total Environ 1984;38:63-8.

73. Suttie JW. Effects of inorganic fluorides on animals. J Air Pollut Control Assoc 1964;14:461-4.

74. Giri A, Bharti VK, Angmo K, Kalia S, Kumar B. Fluoride induced oxidative stress, immune system and apoptosis in animals: a review. IJB 2016;5:5174.

75. Nizam S, Virk HS, Sen IS. High levels of fluoride in groundwater from Northern parts of Indo-Gangetic plains reveals detrimental fluorosis health risks. Environ Adv 2022;8:100200.

76. Dehghani MH, Zarei A, Yousefi M, Asghari FB, Haghighat GA. Fluoride contamination in groundwater resources in the southern Iran and its related human health risks. Desalin Water Treat 2019;153:95-104.

77. Sahu BL, Banjare GR, Ramteke S, Patel KS, Matini L. Fluoride contamination of groundwater and toxicities in Dongargaon Block, Chhattisgarh, India. Expo Health 2017;9:143-56.

78. Yousefi M, Ghalehaskar S, Asghari FB, et al. Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran. Regul Toxicol Pharmacol 2019;107:104408.

79. Yousefi M, Ghoochani M, Hossein Mahvi A. Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. Ecotoxicol Environ Saf 2018;148:426-30.

80. Mohammadi AA, Yousefi M, Yaseri M, Jalilzadeh M, Mahvi AH. Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran. Sci Rep 2017;7:17300.

81. Yousefi M, Yaseri M, Nabizadeh R, et al. Association of hypertension, body mass index, and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas, Iran. Biol Trace Elem Res 2018;185:282-8.

82. Cao J, Chen Y, Chen J, Yan H, Li M, Wang J. Fluoride exposure changed the structure and the expressions of Y chromosome related genes in testes of mice. Chemosphere 2016;161:292-9.

83. Alexander BH, Olsen GW. Bladder cancer in perfluorooctanesulfonyl fluoride manufacturing workers. Ann Epidemiol 2007;17:471-8.

84. Yang CY, Cheng MF, Tsai SS, Hung CF. Fluoride in drinking water and cancer mortality in Taiwan. Environ Res 2000;82:189-93.

85. Ge D, Huang S, Cheng J, et al. A new environment-friendly polyferric sulfate-catalyzed ozonation process for sludge conditioning to achieve deep dewatering and simultaneous detoxification. J Clean Prod 2022;359:132049.

86. Yin C, Yu S, An B, et al. Fluorine recovery from etching wastewater through CaF2-based near-infrared photocatalyst synthesis. J Clean Prod 2018;175:267-75.

87. Dobó Z, Dinh T, Kulcsár T. A review on recycling of spent lithium-ion batteries. Energy Rep 2023;9:6362-95.

88. Zhou LF, Yang D, Du T, Gong H, Luo WB. The current process for the recycling of spent lithium ion batteries. Front Chem 2020;8:578044.

89. Yang K, Gong P, Tian Z, Lai Y, Li J. Recycling spent carbon cathode by a roasting method and its application in Li-ion batteries anodes. J Clean Prod 2020;261:121090.

90. Zhu Z, Xu L, Han Z, et al. Optimization of response surface methodology (RSM) for defluorination of spent carbon cathode (SCC) in fire-roasting aluminum electrolysis. Miner Eng 2022;182:107565.

91. Fujii T, Kashimura K, Tanaka H. Microwave sintering of fly ash containing unburnt carbon and sodium chloride. J Hazard Mater 2019;369:318-23.

92. Liu X, Bouxin FP, Fan J, Budarin VL, Hu C, Clark JH. Microwave-assisted catalytic depolymerization of lignin from birch sawdust to produce phenolic monomers utilizing a hydrogen-free strategy. J Hazard Mater 2021;402:123490.

93. Zhu Z, Xu L, Han Z, et al. Defluorination study of spent carbon cathode by microwave high-temperature roasting. J Environ Manage 2022;302:114028.

94. Dong L, Jiao F, Liu W, Wang C, Wang D, Qin W. A novel approach for extracting lithium from overhaul slag by low temperature roasting - water leaching. Chem Eng J 2024;481:148571.

95. Su F, Zhou X, Liu X, et al. Efficient recovery of valuable metals from spent Lithium-ion batteries by pyrite method with hydrometallurgy process. Chem Eng J 2023;455:140914.

96. Xi F, Li S, Ma W, Chen Z, Wei K, Wu J. A review of hydrometallurgy techniques for the removal of impurities from metallurgical-grade silicon. Hydrometallurgy 2021;201:105553.

97. Lisbona D, Steel K. Recovery of fluoride values from spent pot-lining: precipitation of an aluminium hydroxyfluoride hydrate product. Sep Purif Technol 2008;61:182-92.

98. Lisbona DF, Somerfield C, Steel KM. Leaching of spent pot-lining with aluminium nitrate and nitric acid: effect of reaction conditions and thermodynamic modelling of solution speciation. Hydrometallurgy 2013;134-5:132-43.

99. Wu S, Tao W, Han W, et al. Hydrometallurgical stepwise separation of alumina and recovery of aluminum fluoride from waste anode cover material of aluminum electrolysis. Miner Eng 2022;186:107740.

100. Nie Y, Guo X, Guo Z, Tang J, Xiao X, Xin L. Defluorination of spent pot lining from aluminum electrolysis using acidic iron-containing solution. Hydrometallurgy 2020;194:105319.

101. Tao W, Yang J, Chen L, et al. Environmentally friendly and efficient green recovery of fluoride from waste aluminum electrolytic sediment using Al2O3. Sep Purif Technol 2023;317:123934.

102. Yao Z, Zhong Q, Xiao J, Ye S, Tang L, Zhang Z. An environmental-friendly process for dissociating toxic substances and recovering valuable components from spent carbon cathode. J Hazard Mater 2021;404:124120.

103. Yao Z, Xiao J, Mao Q, et al. Detoxification and recovery of spent carbon cathodes via NaOH–Na2CO3 binary molten salt roasting - water leaching: toward a circular economy for hazardous solid waste from aluminum electrolysis. ACS Sustainable Chem Eng 2020;8:16912-23.

104. Li H, Huang Y, Yang X, Jiang Z, Yang Z. Approach to the management of magnesium slag via the production of Portland cement clinker. J Mater Cycles Waste Manag 2018;20:1701-9.

105. Gao X, Yao X, Yang T, Zhou S, Wei H, Zhang Z. Calcium carbide residue as auxiliary activator for one-part sodium carbonate-activated slag cements: compressive strength, phase assemblage and environmental benefits. Constr Build Mater 2021;308:125015.

106. Xie G, Suo Y, Liu L, et al. Mechanical grinding activation of modified magnesium slag and its use as backfilling cementitious material. Case Stud Constr Mat 2023;18:e01778.

107. Ji G, Peng X, Wang S, et al. Influence of magnesium slag as a mineral admixture on the performance of concrete. Constr Build Mater 2021;295:123619.

108. Zhu P, Chen Y, Wang LY, et al. Preparation of anorthite ceramic using mining tailings and calcium fluoride sludge. Can Metall Quart 2013;52:190-8.

109. Zhu P, Cao Z, Ye Y, et al. Reuse of hazardous calcium fluoride sludge from the integrated circuit industry. Waste Manag Res 2013;31:1154-9.

110. Zhu P, Cao ZB, Wang LY, et al. Recycling of calcium fluoride sludge as ceramic material using low temperature sintering technology. J Mater Cycles Waste Manag 2014;16:156-61.

Green Manufacturing Open
ISSN 2835-7590 (Online)
Follow Us

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/