1. Rasiya G, Shukla A, Saran K. Additive manufacturing - a review. Mater Today 2021;47:6896-901.
2. Ahmadi Z, Lee S, Unocic RR, Shamsaei N, Mahjouri-Samani M. Additive nanomanufacturing of multifunctional materials and patterned structures: a novel laser-based dry printing process. Adv Mater Technol 2021;6:2001260.
3. Ahmadi Z, Lee S, Patel A, Unocic RR, Shamsaei N, Mahjouri-Samani M. Dry printing and additive nanomanufacturing of flexible hybrid electronics and sensors. Adv Mater Inter 2022;9:2102569.
4. Martins R, Gaspar D, Mendes MJ, et al. Papertronics: multigate paper transistor for multifunction applications. Appl Mater Today 2018;12:402-14.
5. Singh R, Sharma V. Nano tungsten carbide interactions and mechanical behaviour during sintering: a molecular dynamics study. Comput Mater Sci 2021;197:110653.
6. Bordia RK, Kang SL, Olevsky EA. Current understanding and future research directions at the onset of the next century of sintering science and technology. J Am Ceram Soc 2017;100:2314-52.
8. Yan F, Zhang X, Yang C, Hu B, Qian W, Song Z. Data-driven modelling methods in sintering process: current research status and perspectives. Can J Chem Eng 2023;101:4506-22.
9. Pan J, Le H, Kucherenko S, Yeomans J. A model for the sintering of spherical particles of different sizes by solid state diffusion. Acta Mater 1998;46:4671-90.
10. Buesser B, Gröhn AJ, Pratsinis SE. Sintering rate and mechanism of TiO2 nanoparticles by molecular dynamics. J Phys Chem C Nanomater Interfaces 2011;115:11030-5.
11. Yang G, Lai H, Lin W, et al. A quantitative model to understand the microflow-controlled sintering mechanism of metal particles at nanometer to micron scale. Nanotechnology 2021;32:505721.
12. Jamshideasli D, Mahjouri-samani M, Shamsaei N, Shao S. Molecular dynamics simulations of nanoparticle sintering in additive nanomanufacturing: the role of particle size, misorientation angle, material type, and temperature. Mater Today Commun 2024;39:108877.
13. Zhu H. Sintering processes of two nanoparticles: a study by molecular dynamics simulations. Phil Mag Lett 1996;73:27-33.
14. Yang Y, Li Z, Yang S, Li Y, Huang J. Multiscale simulation study of laser sintering of inkjet-printed silver nanoparticle inks. Int J Heat Mass Tran 2020;159:120110.
15. Rahaman MN. 2 - Kinetics and mechanisms of densification. In: Sintering of advanced materials. Elsevier; 2010. pp. 33-64.
16. Song P, Wen D. Molecular dynamics simulation of the sintering of metallic nanoparticles. J Nanopart Res 2010;12:823-9.
18. German RM. Chapter three - Infrastructure developments. In: Sintering: from empirical observations to scientific principles. Elsevier; 2014. pp. 41-69.
19. Zeng P, Zajac S, Clapp P, Rifkin J. Nanoparticle sintering simulations. Mat Sci Eng A 1998;252:301-6.
20. Gu M, Liu T, Xiao X, Li G, Liao W. Simulation and experimental study of the multisized silver nanoparticles sintering process based on molecular dynamics. Nanomaterials 2022;12:1030.
21. Hu Y, Wang Y, Yao Y. Molecular dynamics on the sintering mechanism and mechanical feature of the silver nanoparticles at different temperatures. Mater Today Commun 2023;34:105292.
22. Zhang L, Shibuta Y, Lu C, Huang X. Interaction between nano-voids and migrating grain boundary by molecular dynamics simulation. Acta Mater 2019;173:206-24.
23. Lange A, Samanta A, Majidi H, et al. Dislocation mediated alignment during metal nanoparticle coalescence. Acta Mater 2016;120:364-78.
24. Rojek J, Nosewicz S, Maździarz M, Kowalczyk P, Wawrzyk K, Lumelskyj D. Modeling of a sintering process at various scales. Procedia Eng 2017;177:263-70.
25. Alarifi H, Hu A, Yavuz M, Zhou YN. Silver nanoparticle paste for low-temperature bonding of copper. J Electron Mater 2011;40:1394-402.
26. Pan J. Solid-state diffusion under a large driving force and the sintering of nanosized particles. Phil Mag Lett 2004;84:303-10.
27. Pan H, Ko SH, Grigoropoulos CP. The solid-state neck growth mechanisms in low energy laser sintering of gold nanoparticles: a molecular dynamics simulation study. J Heat Transfer 2008;130:092404.
28. Sestito JM, Abdeljawad F, Harris TA, Wang Y, Roach A. An atomistic simulation study of nanoscale sintering: the role of grain boundary misorientation. Comput Mater Sci 2019;165:180-9.
31. Mishin Y, Herzig C, Bernardini J, Gust W. Grain boundary diffusion: fundamentals to recent developments. Int Mater Rev 1997;42:155-78.
32. Sai Rajeshwari K, Sankaran S, Hari Kumar KC, et al. Grain boundary diffusion and grain boundary structures of a Ni-Cr-Fe- alloy: evidences for grain boundary phase transitions. Acta Mater 2020;195:501-18.
33. Legros M, Dehm G, Arzt E, Balk TJ. Observation of giant diffusivity along dislocation cores. Science 2008;319:1646-9.
36. Pike NA, Løvvik OM. Calculation of the anisotropic coefficients of thermal expansion: a first-principles approach. Comput Mater Sci 2019;167:257-63.
37. Scola J, Tassart X, Vilar C, et al. Microstructure and electrical resistance evolution during sintering of a Ag nanoparticle paste. J Phys D Appl Phys 2015;48:145302.
38. Zhou XW, Johnson RA, Wadley HNG. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 2004;69:144113.
39. Mendelev M, King A. The interactions of self-interstitials with twin boundaries. Philos Mag 2013;93:1268-78.
40. Huang P, Hsu P, Huang T, Chou C. Laser sintering of Cu nanoparticles: analysis based on modified continuum-atomistic model. Appl Phys A 2020;126:3213.
41. Haslam A, Phillpot S, Wolf D, Moldovan D, Gleiter H. Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation. Mater Sci Eng A 2001;318:293-312.
42. Nelli D, Cerbelaud M, Ferrando R, Minnai C. Tuning the coalescence degree in the growth of Pt-Pd nanoalloys. Nanoscale Adv 2021;3:836-46.
43. Taba A, Ahmadi Z, Patel A, et al. Dry-printing conductive circuit traces on water-soluble papers. ACS Sustain Chem Eng 2023;11:16407-16.
44. Ghosh P, Lu J, Chen Z, Yang H, Qiu M, Li Q. Photothermal-induced nanowelding of metal–semiconductor heterojunction in integrated nanowire units. Adv Elect Mater 2018;4:1700614.
45. Sisáková K, Oriňak A, Oriňaková R, et al. Methane decomposition over modified carbon fibers as effective catalysts for hydrogen production. Catal Lett 2020;150:781-93.
46. Wei X, Zhang J, Xu K. The energy and structure of (0 0 1) twist grain boundary in noble metals. Appl Surf Sci 2006;253:854-8.
47. Ayadi A, Laib H, Khalfallah O. Relationship between structure and energy of symmetric tilt grain boundaries in Ag and Ni. Acta Phys Pol A 2020;138:528-32.
48. Thompson AP, Aktulga HM, Berger R, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 2022;271:108171.
49. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modelling Simul Mater Sci Eng 2010;18:015012.
50. Sheppard D, Terrell R, Henkelman G. Optimization methods for finding minimum energy paths. J Chem Phys 2008;128:134106.
51. Larsen PM, Schmidt S, Schiøtz J. Robust structural identification via polyhedral template matching. Modelling Simul Mater Sci Eng 2016;24:055007.
52. Pozzi M, Jonak Dutta S, Kuntze M, et al. Visualization of the high surface-to-volume ratio of nanomaterials and its consequences. J Chem Educ 2024;101:3146-55.
54. Meyer R, Lewis LJ. Stacking-fault energies for Ag, Cu, and Ni from empirical tight-binding potentials. Phys Rev B 2002;66:052106.
56. Hertzberg RW, Saunders H. Deformation and fracture mechanics of engineering materials (2nd Edition). J Pressure Vessel Technol 1985;107:309-11.
57. Cormier VF, Bergman MI, Olson PL. Chapter 7 - Inner core dynamics. In: Earth’s core. Elsevier; 2022. pp. 215-46.
58. Alarifi HA, Atis M, Özdoğan C, Hu A, Yavuz M, Zhou Y. Molecular dynamics simulation of sintering and surface premelting of silver nanoparticles. Mater Trans 2013;54:884-9.
59. Majumdar S, Raveendra S, Samajdar I, Bhargava P, Sharma I. Densification and grain growth during isothermal sintering of Mo and mechanically alloyed Mo–TZM. Acta Mater 2009;57:4158-68.
60. Pan S, Yao G, Cui Y, et al. Additive manufacturing of tungsten, tungsten-based alloys, and tungsten matrix composites. Tungsten 2023;5:1-31.
61. Lumley RN, Sercombe TB, Schaffer GM. Surface oxide and the role of magnesium during the sintering of aluminum. Metall Mater Trans A 1999;30:457-63.
62. Schaffer GB, Hall BJ, Bonner SJ, Huo SH, Sercombe TB. The effect of the atmosphere and the role of pore filling on the sintering of aluminium. Acta Mater 2006;54:131-8.
63. Hong S, van Duin AC. Molecular dynamics simulations of the oxidation of aluminum nanoparticles using the ReaxFF reactive force field. J Phys Chem C 2015;119:17876-86.
64. Raj R, Kulkarni A, Lebrun J, Jha S. Flash sintering: a new frontier in defect physics and materials science. MRS Bulletin 2021;46:36-43.
65. Bebek MB, Stanley CM, Gibbons TM, Estreicher SK. Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping. Sci Rep 2016;6:32150.
66. Zhang J, Wang X, Zhu Y, et al. Molecular dynamics simulation of the melting behavior of copper nanorod. Comput Mater Sci 2018;143:248-54.
67. Alarifi HA, Atiş M, Özdoğan C, Hu A, Yavuz M, Zhou Y. Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation. J Phys Chem C 2013;117:12289-98.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.