REFERENCES
1. Zhang Y, Huang W. Comparisons of 304 austenitic stainless steel manufactured by laser metal deposition and selective laser melting. J Manuf Process 2020;57:324-33.
2. Gong G, Ye J, Chi Y, et al. Research status of laser additive manufacturing for metal: a review. J Mater Res Techol 2021;15:855-84.
3. Nankali M, Akbari J, Moradi M, Malekshahi Beiranvand Z. Effect of laser additive manufacturing parameters on hardness and geometry of Inconel 625 parts manufactured by direct laser metal deposition. Optik 2022;249:168193.
4. Yang N, Dong H. Parameters mensuration of metal powder flow in laser cladding. Acta Opt Sin 2011;31:s100108.
5. Manvatkar V, De A, Debroy T. Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process. Mater Sci Technol 2015;31:924-30.
6. Song B, Yu T, Jiang X, Xi W. Numerical model of transient convection pattern and forming mechanism of molten pool in laser cladding. Numer Heat Transf Part A Appl 2019;75:855-73.
8. Pinkerton AJ, Li L. An investigation of the effect of pulse frequency in laser multiple-layer cladding of stainless steel. Appl Surf Sci 2003;208-209:405-10.
9. Shi J, Zhu P, Fu G, Shi S. Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding. Opt Laser Technol 2018;101:341-8.
10. Peng X, Kong L, Chen Y, Shan Z, Qi L. Design of a multi-sensor monitoring system for additive manufacturing process. Nanomanuf Metrol 2020;3:142-50.
11. Davoudinejad A, Doagou-rad S, Tosello G. A finite element modeling prediction in high precision milling process of aluminum 6082-T6. Nanomanuf Metrol 2018;1:236-47.
12. Pekkarinen J, Salminen A, Kujanpää V. Laser cladding with scanning optics: effect of scanning frequency and laser beam power density on cladding process. J Laser Appl 2014;26:032002.
13. Shah K, Pinkerton AJ, Salman A, Li L. Effects of melt pool variables and process parameters in laser direct metal deposition of aerospace alloys. Mater Manuf Process 2010;25:1372-80.
14. Xing X, Zhou Q, Wang S, Wang L, Jiang F. Numerical investigation of transient temperature distribution during Ti-6Al-4V selective laser melting. J Therm Sci 2019;28:370-7.
15. Yazar KU, Pawar S, Park KS, Choi SH. Effect of process parameters on the clad morphology, microstructure, microtexture, and hardness of single layer 316L stainless steel during direct energy deposition. Mater Charact 2022;191:112148.
16. Wu J, Zhang C, Jiang P, Li C, Cao H. A prediction approach of fiber laser surface treatment using ensemble of metamodels considering energy consumption and processing quality. Green Manuf Open 2022;1:3.
17. Song B, Yu T, Jiang X, Xi W, Lin X. Effect of laser power on molten pool evolution and convection. Numer Heat Transf Part A Appl 2020;78:48-59.
18. Tian H, Chen X, Yan Z, Zhi X, Yang Q, Yuan Z. Finite-element simulation of melt pool geometry and dilution ratio during laser cladding. Appl Phys A 2019:125.
19. Sergeev D, Marinin E, Kokorin V, Anufriev D. The improvement of surface quality characteristics after mechanical treatment by pulse laser radiation. Mater Today Proc 2021;38:1613-6.
20. Wei K, Lv M, Zeng X, et al. Effect of laser remelting on deposition quality, residual stress, microstructure, and mechanical property of selective laser melting processed Ti-5Al-2.5Sn alloy. Mater Charact 2019;150:67-77.
21. Wu D, Lu F, Zhao D, et al. Effect of doping SiC particles on cracks and pores of Al2O3-ZrO2 eutectic ceramics fabricated by directed laser deposition. J Mater Sci 2019;54:9321-30.
22. Bai Y, Zhao C, Wang D, Wang H. Evolution mechanism of surface morphology and internal hole defect of 18Ni300 maraging steel fabricated by selective laser melting. J Mater Process Technol 2022;299:117328.
23. Li L, Gong J, Xia H, et al. Influence of scan paths on flow dynamics and weld formations during oscillating laser welding of 5A06 aluminum alloy. J Mater Res Technol 2021;11:19-32.
24. Qi H, Mazumder J, Ki H. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. J Appl Phys 2006;100:024903.
25. Song L, Wang F, Li S, Han X. Phase congruency melt pool edge extraction for laser additive manufacturing. J Mater Process Technol 2017;250:261-9.
26. Gharbi M, Peyre P, Gorny C, et al. Influence of a pulsed laser regime on surface finish induced by the direct metal deposition process on a Ti64 alloy. J Mater Process Technol 2014;214:485-95.
27. Gharbi M, Peyre P, Gorny C, et al. Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti-6Al-4V alloy. J Mater Process Technol 2013;213:791-800.
28. Tang Z, Liu W, Zhang N, Wang Y, Zhang H. Real-time prediction of penetration depths of laser surface melting based on coaxial visual monitoring. Opt Lasers Eng 2020;128:106034.
29. Ding X, Koizumi Y, Wei D, Chiba A. Effect of process parameters on melt pool geometry and microstructure development for electron beam melting of IN718: a systematic single bead analysis study. Addit Manuf 2019;26:215-26.
30. Bhatnagar S, Mullick S, Gopinath M. A lumped parametric analytical model for predicting molten pool temperature and clad geometry in pre-placed powder laser cladding. Optik 2021;247:168015.
31. Lin J. Temperature analysis of the powder streams in coaxial laser cladding. Opt Laser Technol 1999;31:565-570.
32. Padhi UP, Singh AP, Joarder R. Experimental and numerical investigations of double pulse laser energy deposition in air. Int J Heat Fluid Flow 2020;82:108563.
33. Pinkerton AJ, Li L. The effect of laser pulse width on multiple-layer 316L steel clad microstructure and surface finish. Appl Surf Sci 2003;208-209:411-6.
34. Wei S, Wang G, Shin YC, Rong Y. Comprehensive modeling of transport phenomena in laser hot-wire deposition process. Int J Heat Mass Transf 2018;125:1356-68.
35. Liu H, Li M, Qin X, Huang S, Hong F. Numerical simulation and experimental analysis of wide-beam laser cladding. Int J Adv Manuf Technol 2019;100:237-249.