REFERENCES

1. Kara S, Hauschild M, Sutherland J, Mcaloone T. Closed-loop systems to circular economy: a pathway to environmental sustainability? CIRP Annals 2022;71:505-28.

2. Pye K, Blott SJ, Forbes N, Maskell LC. Geomorphological and ecological change in a coastal foreland dune system, Sandscale haws, Cumbria, UK: the management challenges posed by climate change. J Coast Conserv 2020:24.

3. Use of energy in explained - U.S. energy information administration (EIA). Available from: https://www.eia.gov/energyexplained/use-of-energy/ [Last accessed on 28 Mar 2023].

4. Duflou JR, Sutherland JW, Dornfeld D, et al. Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Annals 2012;61:587-609.

5. OECD. About sustainable manufacturing and the toolkit. Available from: https://www.oecd.org/innovation/green/toolkit/aboutsustainablemanufacturingandthetoolkit.htm [Last accessed on 28 Mar 2023].

6. Hauschild M, Dornfeld D, Hutchins M, Kara S, Jovane F. Sustainable manufacturing. In: Laperrière L, Reinhart G, editors. CIRP encyclopedia of production engineering. Berlin: Springer Berlin Heidelberg; 2014. pp. 1208-14.

7. Pimenov DY, Mia M, Gupta MK, et al. Resource saving by optimization and machining environments for sustainable manufacturing: a review and future prospects. Renew Sust Energ Rev 2022;166:112660.

8. Bhatt Y, Ghuman K, Dhir A. Sustainable manufacturing. Bibliometrics and content analysis. J Clean Prod 2020;260:120988.

9. Machado CG, Winroth MP, Ribeiro da Silva EHD. Sustainable manufacturing in industry 4.0: an emerging research agenda. Int J Prod Res 2020;58:1462-84.

10. Malek J, Desai TN. A systematic literature review to map literature focus of sustainable manufacturing. J Clean Prod 2020;256:120345.

11. Sartal A, Bellas R, Mejías AM, García-collado A. The sustainable manufacturing concept, evolution and opportunities within industry 4.0: A literature review. Adv Mech Eng 2020;12:168781402092523.

12. Sharma R, Jabbour CJC, Lopes de Sousa Jabbour AB. Sustainable manufacturing and industry 4.0: what we know and what we don’t. JEIM 2021;34:230-66.

13. Zarte M, Pechmann A, Nunes IL. Decision support systems for sustainable manufacturing surrounding the product and production life cycle – a literature review. J Clean Prod 2019;219:336-49.

14. Akbar M, Irohara T. Scheduling for sustainable manufacturing: a review. J Clean Prod 2018;205:866-83.

15. Gbededo MA, Liyanage K, Garza-reyes JA. Towards a life cycle sustainability analysis: a systematic review of approaches to sustainable manufacturing. J Clean Prod 2018;184:1002-15.

16. Moldavska A, Welo T. The concept of sustainable manufacturing and its definitions: a content-analysis based literature review. J Clean Prod 2017;166:744-55.

17. Hartini S, Ciptomulyono U. The relationship between lean and sustainable manufacturing on performance: literature review. Procedia Manuf 2015;4:38-45.

18. Haapala KR, Zhao F, Camelio J, et al. A review of engineering research in sustainable manufacturing. J Manuf Sci Eng 2013;135:041013.

19. Sihag N, Sangwan KS. A systematic literature review on machine tool energy consumption. J Clean Prod 2020;275:123125.

20. Zhao F, Ogaldez J, Sutherland JW. Quantifying the water inventory of machining processes. CIRP Annals 2012;61:67-70.

21. Pervaiz S, Kannan S, Kishawy HA. An extensive review of the water consumption and cutting fluid based sustainability concerns in the metal cutting sector. J Clean Prod 2018;197:134-53.

22. Kellens K, Dewulf W, Overcash M, Hauschild MZ, Duflou JR. Methodology for systematic analysis and improvement of manufacturing unit process life cycle inventory (UPLCI) CO2PE! Int J Life Cycle Assess 2012;17:242-51.

23. Kellens K, Dewulf W, Overcash M, Hauschild MZ, Duflou JR. Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory (UPLCI)-CO2PE! Int J Life Cycle Assess 2012;17:69-78.

24. Overcash M, Twomey J, Kalla D. Unit process life cycle inventory for product manufacturing operations. In: ASME 2009 International Manufacturing Science and Engineering Conference; 2009 49-55.

25. Patterson M, Singh P, Cho H. The current state of the industrial energy assessment and its impacts on the manufacturing industry. Energy Rep 2022;8:7297-311.

26. Diaz N, Redelsheimer E, Dornfeld D. Energy consumption characterization and reduction strategies for milling machine tool use. In: Hesselbach J, Herrmann C, editors. Glocalized Solutions for Sustainability in Manufacturing. Berlin: Springer Berlin Heidelberg; 2011. pp. 263-7.

27. Mori M, Fujishima M, Inamasu Y, Oda Y. A study on energy efficiency improvement for machine tools. CIRP Annals 2011;60:145-8.

28. Matsunaga F, Zytkowski V, Valle P, Deschamps F. Optimization of energy efficiency in smart manufacturing through the application of cyber-physical systems and industry 4.0 technologies. J Energy Resour Technol 2022;144:102104.

29. Adler DP, Hii WW, Michalek DJ, Sutherland JW. Examining the role of cutting fluids in machining and efforts to address associated environmental/health concerns. Mach Sci and Technol 2006;10:23-58.

30. Supekar SD, Graziano DJ, Skerlos SJ, Cresko J. Comparing energy and water use of aqueous and gas‐based metalworking fluids. J Ind Ecol 2020;24:1158-70.

31. Rejeski D, Zhao F, Huang Y. Research needs and recommendations on environmental implications of additive manufacturing. Addit Manuf 2018;19:21-8.

32. Faludi J, Bayley C, Bhogal S, Iribarne M. Comparing environmental impacts of additive manufacturing vs. traditional machining via life-cycle assessment. Rapid Prototyp J 2015;21:14-33.

33. Le VT, Paris H, Mandil G. Environmental impact assessment of an innovative strategy based on an additive and subtractive manufacturing combination. J Clean Prod 2017;164:508-23.

34. Gao C, Wolff S, Wang S. Eco-friendly additive manufacturing of metals: energy efficiency and life cycle analysis. J Manuf Syst 2021;60:459-72.

35. Khalid M, Peng Q. Sustainability and environmental impact of additive manufacturing: a literature review. Comput Aided Des Appl 2021;18:1210-32.

36. Ghobakhloo M. Industry 4.0, digitization, and opportunities for sustainability. J Clean Prod 2020;252:119869.

37. Lee WJ, Joung BG, Sutherland JW. Environmental and economic performance of different maintenance strategies for a product subject to efficiency erosion. J Clean Prod 2023;389:135340.

38. Lee J, Wu F, Zhao W, Ghaffari M, Liao L, Siegel D. Prognostics and health management design for rotary machinery systems-reviews, methodology and applications. Mech Syst Signal Process 2014;42:314-34.

39. Lee WJ, Xia K, Denton NL, Ribeiro B, Sutherland JW. Development of a speed invariant deep learning model with application to condition monitoring of rotating machinery. J Intell Manuf 2021;32:393-406.

40. Wu H, Huang A, Sutherland JW. Avoiding environmental consequences of equipment failure via an lstm-based model for predictive maintenance. Procedia Manuf 2020;43:666-73.

41. Bakker C, Wang F, Huisman J, den Hollander M. Products that go round: exploring product life extension through design. J Clean Prod 2014;69:10-6.

42. Morioka T, Tsunemi K, Yamamoto Y, Yabar H, Yoshida N. Eco-efficiency of advanced loop-closing systems for vehicles and household appliances in hyogo eco-town. J Ind Ecol 2005;9:205-21.

43. Ford S, Despeisse M. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 2016;137:1573-1587.

44. Zhang Y, Ma S, Yang H, Lv J, Liu Y. A big data driven analytical framework for energy-intensive manufacturing industries. J Clean Prod 2018;197:57-72.

45. Kellens K, Dewulf W, Lauwers B, Kruth J, Duflou J. Environmental impact reduction in discrete manufacturing: examples for non-conventional processes. Procedia CIRP 2013;6:27-34.

46. Bermeo-ayerbe MA, Ocampo-martínez C, Diaz-rozo J. Adaptive predictive control for peripheral equipment management to enhance energy efficiency in smart manufacturing systems. J Clean Prod 2021;291:125556.

47. Song B, Ao Y, Xiang L, Lionel K. Data-driven approach for discovery of energy saving potentials in manufacturing factory. Procedia CIRP 2018;69:330-5.

48. Diaz N, Helu M, Jayanathan S, Chen Y, Horvath A, Dornfeld D. Environmental analysis of milling machine tool use in various manufacturing environments. Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology; 2010.

49. Dahmus JB, Gutowski TG. An environmental analysis of machining. In: manufacturing engineering and materials handling engineering. ASMEDC; 2004:643-652.

50. Kordonowy DN. A power assessment of machining tools. Available from: https://dspace.mit.edu/handle/1721.1/31108 [Last accessed on 28 Mar 2023].

51. Zhou L, Li J, Li F, Meng Q, Li J, Xu X. Energy consumption model and energy efficiency of machine tools: a comprehensive literature review. J Clean Prod 2016;112:3721-34.

52. Behrendt T, Zein A, Min S. Development of an energy consumption monitoring procedure for machine tools. CIRP Annals 2012;61:43-6.

53. Li W, Zein A, Kara S, Herrmann C. An investigation into fixed energy consumption of machine tools. In: Hesselbach J, Herrmann C, editors. Glocalized Solutions for Sustainability in Manufacturing. Berlin: Springer Berlin Heidelberg; 2011. pp. 268-73.

54. Triebe MJ, Zhao F, Sutherland JW. Modelling the effect of slide table mass on machine tool energy consumption: the role of lightweighting. J Manuf Syst 2022;62:668-80.

55. Li W, Kara S. An empirical model for predicting energy consumption of manufacturing processes: a case of turning process. Proc Inst Mech Eng B J Eng Manuf 2011;225:1636-46.

56. Kara S, Li W. Unit process energy consumption models for material removal processes. CIRP Annals 2011;60:37-40.

57. Albertelli P. Energy saving opportunities in direct drive machine tool spindles. J Clean Prod 2017;165:855-73.

58. Diaz N, Choi S, Helu M, et al. Machine tool design and operation strategies for green manufacturing. Proceedings of 4th CIRP International Conference on High Performance Cutting; 2010 October 271-276.

59. Huang H, Zou X, Li L, Li X, Liu Z. Energy-saving design method for hydraulic press drive system with multi motor-pumps. Int J Pr Eng Man-Gt 2019;6:223-34.

60. Kroll L, Blau P, Wabner M, Frieß U, Eulitz J, Klärner M. Lightweight components for energy-efficient machine tools. IRP J Manuf Sci Technol 2011;4:148-60.

61. Lv J, Tang R, Tang W, Liu Y, Zhang Y, Jia S. An investigation into reducing the spindle acceleration energy consumption of machine tools. J Clean Prod 2017;143:794-803.

62. Dietmair A, Zulaika J, Sulitka M, Bustillo A, Verl A. Lifecycle impact reduction and energy savings through light weight eco-design of machine tools. In: Proceedings of the 17th CIRP Conference on Life Cycle Engineering. 2010:105-110.

63. Aggogeri F, Borboni A, Merlo A, Pellegrini N, Ricatto R. Vibration damping analysis of lightweight structures in machine tools. Materials 2017;10:297.

64. Suh J, Lee D, Kegg R. Composite machine tool structures for high speed milling machines. CIRP Annals 2002;51:285-8.

65. Denkena B, Abele E, Brecher C, Dittrich M, Kara S, Mori M. Energy efficient machine tools. CIRP Annals 2020;69:646-67.

66. Yoon H, Lee J, Kim M, Ahn S. Empirical power-consumption model for material removal in three-axis milling. J Clean Prod 2014;78:54-62.

67. Fang K, Uhan N, Zhao F, Sutherland JW. A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. J Manuf Syst 2011;30:234-40.

68. Gahm C, Denz F, Dirr M, Tuma A. Energy-efficient scheduling in manufacturing companies: a review and research framework. Eur J Oper Res 2016;248:744-57.

69. Munoz A, Sheng P. An analytical approach for determining the environmental impact of machining processes. J Mater Process Technol 1995;53:736-58.

70. Zhao F, Murray VR, Ramani K, Sutherland JW. Toward the development of process plans with reduced environmental impacts. Front Mech Eng 2012;7:231-46.

71. Guo Y, Duflou JR, Deng Y, Lauwers B. A life cycle energy analysis integrated process planning approach to foster the sustainability of discrete part manufacturing. Energy 2018;153:604-17.

72. Reiff C, Buser M, Betten T, et al. A process-planning framework for sustainable manufacturing. Energies 2021;14:5811.

73. Jiang Z, Zhang H, Sutherland JW. Development of an environmental performance assessment method for manufacturing process plans. Int J Adv Manuf Technol 2012;58:783-90.

74. Hutchins MJ, Sutherland JW. An exploration of measures of social sustainability and their application to supply chain decisions. J Clean Prod 2008;16:1688-98.

75. Xu L, Wang C. Sustainable manufacturing in a closed-loop supply chain considering emission reduction and remanufacturing. Resour Conserv Recycl 2018;131:297-304.

76. Jin H, Yih Y, Sutherland JW. Modeling operation and inventory for rare earth permanent magnet recovery under supply and demand uncertainties. J Manuf Syst 2018;46:59-66.

77. Deng S, Prodius D, Nlebedim IC, Huang A, Yih Y, Sutherland JW. A dynamic price model based on supply and demand with application to techno-economic assessments of rare earth element recovery technologies. Sustain Prod Consum 2021;27:1718-27.

78. Tong W, Mu D, Zhao F, Mendis GP, Sutherland JW. The impact of cap-and-trade mechanism and consumers’ environmental preferences on a retailer-led supply Chain. Resour Conserv Recycl 2019;142:88-100.

79. Ren H, Zhou W, Guo Y, et al. A GIS-based green supply chain model for assessing the effects of carbon price uncertainty on plastic recycling. Int J Prod Res 2020;58:1705-23.

80. Xu L, Wang C, Zhao J. Decision and coordination in the dual-channel supply chain considering cap-and-trade regulation. J Clean Prod 2018;197:551-61.

81. Zhang F, Wang J, Liu S, Zhang S, Sutherland JW. Integrating GIS with optimization method for a biofuel feedstock supply chain. Biomass Bioenergy 2017;98:194-205.

82. Zhang X, Zhao G, Qi Y, Li B. A robust fuzzy optimization model for closed-loop supply chain networks considering sustainability. Sustainability 2019;11:5726.

83. Khoo HH, Eufrasio-espinosa RM, Koh LS, Sharratt PN, Isoni V. Sustainability assessment of biorefinery production chains: a combined LCA-supply chain approach. J Clean Prod 2019;235:1116-37.

84. Munasinghe M, Jayasinghe P, Deraniyagala Y, et al. Value–supply chain analysis (VSCA) of crude palm oil production in Brazil, focusing on economic, environmental and social sustainability. Sustain Prod Consum 2019;17:161-75.

85. Ghadimi P, Wang C, Azadnia AH, Lim MK, Sutherland JW. Life cycle-based environmental performance indicator for the coal-to-energy supply chain: a Chinese case application. Resour Conserv Recycl 2019;147:28-38.

86. Singh S, Sharma SK, Rathod DW. A review on process planning strategies and challenges of WAAM. Materials Today: Proceedings 2021;47:6564-75.

87. Sato FEK, Nakata T. Recoverability analysis of critical materials from electric vehicle lithium-ion batteries through a dynamic fleet-based approach for Japan. Sustainability 2020;12:147.

88. Jin H, Reed DW, Thompson VS, et al. Sustainable bioleaching of rare earth elements from industrial waste materials using agricultural wastes. ACS Sustainable Chem Eng 2019;7:15311-9.

89. Nelson GJ, Ausderau LJ, Shin S, et al. Transport-geometry interactions in li-ion cathode materials imaged using X-ray nanotomography. J Electrochem Soc 2017;164:A1412-24.

90. D’adamo I, Rosa P. A structured literature review on obsolete electric vehicles management practices. Sustainability 2019;11:6876.

91. Mathur N, Deng S, Singh S, Yih Y, Sutherland JW. Evaluating the environmental benefits of implementing industrial symbiosis to used electric vehicle batteries. Procedia CIRP 2019;80:661-6.

92. Lee WJ, Mendis GP, Triebe MJ, Sutherland JW. Monitoring of a machining process using kernel principal component analysis and kernel density estimation. J Intell Manuf 2020;31:1175-89.

93. European Environment Agency. Circular economy in Europe - developing the knowledge base. available from: https://ec.europa.eu/environment/ecoap/policies-and-practices-eco-innovation-uptake-and-circular-economy-transition_en [Last accessed on 28 Mar 2023].

94. Geissdoerfer M, Savaget P, Bocken NM, Hultink EJ. The circular economy – a new sustainability paradigm? J Clean Prod 2017;143:757-68.

95. Kirchherr J, Reike D, Hekkert M. Conceptualizing the circular economy: an analysis of 114 definitions. Resour Conserv Recycl 2017;127:221-32.

96. Ghosh T, Hanes R, Key A, Walzberg J, Eberle A. The circular economy life cycle assessment and visualization framework: a multistate case study of wind blade circularity in United States. Resour Conserv Recycl 2022;185:106531.

97. Sassanelli C, Rosa P, Rocca R, Terzi S. Circular economy performance assessment methods: a systematic literature review. J Clean Prod 2019;229:440-53.

98. Hanes R, Ghosh T, Key A, Eberle A. The circular economy lifecycle assessment and visualization framework: a case study of wind blade circularity in texas. Front Sustain 2021;2:671979.

99. Tian X, Xie J, Xu M, Wang Y, Liu Y. An infinite life cycle assessment model to re-evaluate resource efficiency and environmental impacts of circular economy systems. Waste Manag 2022;145:72-82.

100. Richa K, Babbitt CW, Gaustad G, Wang X. A future perspective on lithium-ion battery waste flows from electric vehicles. Resour Conserv Recycl 2014;83:63-76.

101. Sutherland J, Gunter K, Weinmann K. A model for improving economic performance of a demanufacturing system for reduced product end-of-life environmental impact. CIRP Annals 2002;51:45-8.

102. Dunn J, Kendall A, Slattery M. Electric vehicle lithium-ion battery recycled content standards for the US – targets, costs, and environmental impacts. Resour Conserv Recycl 2022;185:106488.

103. Cong L, Zhao F, Sutherland JW. Integration of dismantling operations into a value recovery plan for circular economy. J Clean Prod 2017;149:378-86.

104. Cong L, Zhao F, Sutherland JW. A design method to improve end-of-use product value recovery for circular economy. J Mech Design 2019;141:044502.

105. Colledani M, Battaïa O. A decision support system to manage the quality of end-of-life products in disassembly systems. CIRP Annals 2016;65:41-4.

106. Bentaha M, Voisin A, Marangé P. A decision tool for disassembly process planning under end-of-life product quality. Int J Prod Econ 2020;219:386-401.

107. Kara Y, Gökçen H, Atasagun Y. Balancing parallel assembly lines with precise and fuzzy goals. Int J Prod Res 2010;48:1685-703.

108. Deng S, Kpodzro E, Maani T, et al. Planning a circular economy system for electric vehicles using network simulation. J Manuf Syst 2022;63:95-106.

109. Alfaro-algaba M, Ramirez FJ. Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resour Conserv Recycl 2020;154:104461.

110. Ortegon K, Nies L, Sutherland JW. Remanufacturing. In: Chatti S, Laperrière L, Reinhart G, Tolio T, editors. CIRP Encyclopedia of Production Engineering. Berlin: Springer Berlin Heidelberg; 2019. pp. 1428-30.

111. Johnson MR, Mccarthy IP. Product recovery decisions within the context of extended producer responsibility. J Eng Technol Manage 2014;34:9-28.

112. Seitz MA. A critical assessment of motives for product recovery: the case of engine remanufacturing. J Clean Prod 2007;15:1147-57.

113. Ortegon K, Nies LF, Sutherland JW. Remanufacturing: an alternative for end of use of wind turbines. In: Dornfeld DA, Linke BS, editors. Leveraging Technology for a Sustainable World. Berlin: Springer Berlin Heidelberg; 2012. pp. 155-60.

114. Ortegon K, Nies LF, Sutherland JW. The impact of maintenance and technology change on remanufacturing as a recovery alternative for used wind turbines. Procedia CIRP 2014;15:182-8.

115. Adler DP, Kumar V, Ludewig PA, Sutherland JW. Comparing energy and other measures of environmental performance in the original manufacturing and remanufacturing of engine components. In: Proceedings of the ASME International Manufacturing Science and Engineering Conference 2007; 2007.

116. Boustani A, Sahni S, Graves SC, Gutowski TG. Appliance remanufacturing and life cycle energy and economic savings. In: Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology; 2010.

117. Kerr W, Ryan C. Eco-efficiency gains from remanufacturing. J Clean Prod 2001;9:75-81.

118. Boustani A, Sahni S, Gutowski T, Graves S. Tire remanufacturing and energy savings. Available from: http://web.mit.edu/ebm/www/Publications/MITEI-1-h-2010.pdf [Last accessed on 28 Mar 2023].

119. Allwood JM. Squaring the circular economy. Handbook of Recycling. Elsevier; 2014. pp. 445-77.

120. Baxter J, Lyng KA, Askham C, Hanssen OJ. High-quality collection and disposal of WEEE: environmental impacts and resultant issues. Waste Manag 2016;57:17-26.

121. Sutherland JW, Skerlos SJ, Haapala KR, Cooper D, Zhao F, Huang A. Industrial sustainability: reviewing the past and envisioning the future. J Manuf Sci Eng 2020;142:110806.

122. Gaustad G, Krystofik M, Bustamante M, Badami K. Circular economy strategies for mitigating critical material supply issues. Resour Conserv Recycl 2018;135:24-33.

123. Charles RG, Douglas P, Dowling M, Liversage G, Davies ML. Towards increased recovery of critical raw materials from WEEE– evaluation of CRMs at a component level and pre-processing methods for interface optimisation with recovery processes. Resour Conserv Recycl 2020;161:104923.

124. Jin H, Park DM, Gupta M, et al. Techno-economic assessment for integrating biosorption into rare earth recovery process. ACS Sustainable Chem Eng 2017;5:10148-55.

125. Arshi PS, Vahidi E, Zhao F. Behind the scenes of clean energy: the environmental footprint of rare earth products. ACS Sustainable Chem Eng 2018;6:3311-20.

126. Akcil AA, Pillai A, Akcil A. Critical and rare earth elements: recovery from secondary resources. Available from: https://www.researchgate.net/publication/336265917_Critical_and_Rare_Earth_Elements_-_Recovery_from_Secondary_Resources [Last accessed on 28 Mar 2023].

127. Khazdozian H. Driving reuse, recycling, and more efficient use of critical materials. Available from: https://usea.org/sites/default/files/event-/Khazdozian_Reycling and Reuse.pdf [Last accessed on 28 Mar 2023].

128. Binnemans K, Jones PT, Blanpain B, et al. Recycling of rare earths: a critical review. J Clean Prod 2013;51:1-22.

129. Priya A, Hait S. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ Sci Pollut Res Int 2017;24:6989-7008.

130. Brierley CL, Brierley JA. Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 2013;97:7543-52.

131. Brewer A, Dohnalkova A, Shutthanandan V, et al. Microbe encapsulation for selective rare-earth recovery from electronic waste leachates. Environ Sci Technol 2019;53:13888-97.

132. Reed DW, Fujita Y, Daubaras DL, Jiao Y. Thompson VS. Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy 2016;166:34-40.

133. Thompson VS, Gupta M, Jin H, et al. Techno-economic and life cycle analysis for bioleaching rare-earth elements from waste materials. ACS Sustainable Chem Eng 2018;6:1602-9.

135. Cong L. Product design for value recovery in support of closing material loops. Available from: https://docs.lib.purdue.edu/dissertations/AAI10845107/ [Last accessed on 28 Mar 2023].

136. Mathur N, Sutherland JW, Singh S. A study on end of life photovoltaics as a model for developing industrial synergistic networks. Jnl Remanufactur 2022;12:281-301.

137. Kumar V, Sutherland JW. Development and assessment of strategies to ensure economic sustainability of the U.S. automotive recovery infrastructure. Resour Conserv Recycl 2009;53:470-7.

138. Choi JK, Fthenakis V. Design and optimization of photovoltaics recycling infrastructure. Environ Sci Technol 2010;44:8678-83.

139. Sariatli F. Linear economy versus circular economy: a comparative and analyzer study for optimization of economy for sustainability. Visegrad J Bioecon Sustain Dev 2017;6:31-4.

140. Pearce DW, Turner RK. Economics of natural resources and the environment. Available from: https://www.researchgate.net/publication/31662420_Economics_of_natural_resources_and_the_environment_DW_Pearce_RK_Turner [Last accessed on 28 Mar 2023].

141. EPA. Sustainable materials management: materials management and the 3Rs initiative. Available from: https://archive.epa.gov/oswer/international/web/pdf/3rs-initiative-082907.pdf [Last accessed on 28 Mar 2023].

142. Okorie O, Salonitis K, Charnley F, Moreno M, Turner C, Tiwari A. Digitisation and the circular economy: a review of current research and future trends. Energies 2018;11:3009.

143. Awan U, Sroufe R, Shahbaz M. Industry 4.0 and the circular economy: a literature review and recommendations for future research. Bus Strat Env 2021;30:2038-60.

144. Rosa P, Sassanelli C, Urbinati A, Chiaroni D, Terzi S. Assessing relations between circular economy and industry 4.0: a systematic literature review. Int J Prod Res 2020;58:1662-87.

145. Bag S, Yadav G, Dhamija P, Kataria KK. Key resources for industry 4.0 adoption and its effect on sustainable production and circular economy: an empirical study. J Clean Prod 2021;281:125233.

146. Wu H, Huang A, Sutherland JW. Layer-wise relevance propagation for interpreting LSTM-RNN decisions in predictive maintenance. Int J Adv Manuf Technol 2022;118:963-78.

147. Padilla-rivera A, Russo-garrido S, Merveille N. Addressing the social aspects of a circular economy: a systematic literature review. Sustainability 2020;12:7912.

148. Padilla-rivera A, do Carmo BBT, Arcese G, Merveille N. Social circular economy indicators: selection through fuzzy delphi method. Sustain Prod Consum 2021;26:101-10.

149. Moreau V, Sahakian M, van Griethuysen P, Vuille F. Coming full circle: why social and institutional dimensions matter for the circular economy: why social and institutional dimensions Matter. J Ind Ecol 2017;21:497-506.

150. Reich-Weiser C, Vijayaraghavan A, Dornfeld DA. Metrics for sustainable manufacturing. In: ASME 2008 International Manufacturing Science and Engineering Conference;2008:327-335.

151. Mani M, Madan J, Lee JH, Lyons KW, Gupta SK. Review on sustainability characterization for manufacturing processes. National Institute of Standards and Technology, Gaithersburg, MD, Report No. NISTIR 7913. 2013.

152. Jawahir IS, Dillon OW, Rouch KE, Joshi KJ, Venkatachalam A, Jaafar IH. Total life-cycle considerations in product design for sustainability: a framework for comprehensive evaluation. Available from: https://www.researchgate.net/publication/285360999_Total_life-cycle_considerations_in_product_design_for_sustainability_A_framework_for_comprehensive_evaluation [Last accessed on 28 Mar 2023].

153. Dow Jones Sustainability World Index Available from: https://www.spglobal.com/spdji/en/indices/esg/dow-jones-sustainability-world-index/#overview [Last accessed on 28 Mar 2023].

154. OECD. Oecd key environmental indicators 2004. Available from: https://www.oecd.org/environment/indicators-modelling-outlooks/31558547.pdf [Last accessed on 28 Mar 2023].

155. Wulf-peter schmidt ford of Europe, vehicle environmental engineering. Available from: https://www.un.org/esa/sustdev/marrakech/schmidt.pdf [Last accessed on 28 Mar 2023].

156. General motors metrics for sustainable manufacturing - laboratory for sustainable business. Available from: https://www.readkong.com/page/general-motors-1822704 [Last accessed on 28 Mar 2023].

157. Towards environmental pressure indicators for the EU. Available from: https://op.europa.eu/en/publication-detail/-/publication/80ce03d9-fc51-4bb6-a6fc-c3997efa3525 [Last accessed on 28 Mar 2023].

158. United Nations. Indicators of sustainable development: guidelines and methodologies. Available from: https://sustainabledevelopment.un.org/content/documents/guidelines.pdf [Last accessed on 28 Mar 2023].

159. Walmart. Fact sheet: sustainability index. Available from: http://cdn.corporate.walmart.com/4e/07/2822e9e94695815f70ef54d49c09/china-sustainability-supplie-index-fact-sheet_129955748580825248.pdf [Last accessed on 28 Mar 2023].

160. Dornfeld D. Green Manufacturing. Vol 9781441960. (Dornfeld DA, ed.). Springer US; 2013.

161. Laurent A, Olsen S, Hauschild M. Carbon footprint as environmental performance indicator for the manufacturing industry. CIRP Annals 2010;59:37-40.

162. Singh RK, Murty H, Gupta S, Dikshit A. An overview of sustainability assessment methodologies. Ecological Indicators 2012;15:281-99.

163. Sarkar P, Joung CB, Carrell J, Feng SC. Sustainable manufacturing indicator repository. In: 31st Computers and Information in Engineering Conference, 2011:943-950.

164. Chai SYW, Phang FJF, Yeo LS, Ngu LH, How BS. Future era of techno-economic analysis: Insights from review. Front Sustain 2022;3:924047.

165. Thomassen G, Van Dael M, Van Passel S, You F. How to assess the potential of emerging green technologies? Green Chem 2019;21:4868-86.

166. . Van Dael M, Kuppens T, Lizin S, Van Passel S. Techno-economic Assessment methodology for ultrasonic production of biofuels. In: Fang Z, Smith, RL, Qi X, editors. Production of Biofuels and Chemicals with Ultrasound. Dordrecht: Springer Netherlands; 2015. pp. 317-45.

167. Huang T, Pérez-cardona JR, Zhao F, Sutherland JW, Paranthaman MP. Life cycle assessment and techno-economic assessment of lithium recovery from geothermal brine. ACS Sustainable Chem Eng 2021;9:6551-60.

168. Shade SA, Sutherland JW. Energy efficient or energy effective manufacturing? In: Sutherland JW, Dornfeld DA, Linke BS, editors. Energy Efficient Manufacturing. Hoboken: John Wiley & Sons, Inc.; 2018. pp. 421-44.

169. Advanced manufacturing office. 2018 Manufacturing static energy sankey diagrams. Available from: https://www.energy.gov/eere/amo/2018-manufacturing-static-energy-sankey-diagrams [Last accessed on 28 Mar 2023].

170. Feng S, Joung C, Li G. Development overview of sustainable manufacturing metrics. Available from: https://www.nist.gov/publications/development-overview-sustainable-manufacturing-metrics [Last accessed on 28 Mar 2023].

171. Cohen S, Bose S, Guo D, et al. The growth of sustainability metrics 1/3. earth institute research program on sustainability policy and management. 2014;(May):1-16. https://spm.ei.columbia.edu/sites/default/files/content/Publications/SPM_Metrics_WhitePaper_1.pdf.

Green Manufacturing Open
ISSN 2835-7590 (Online)
Follow Us

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/