REFERENCES
1. International Energy Agency. Energy efficiency indicators: database and documentation, 2017. Available from: https://doi.org/10.1787/9789264284234-en [Last accessed on 30Aug 2022].
2. He Y, Xiong J, Li Y, Tian X, Jiang P. Process parameter selection for laser welding of aluminium alloy from the perspective of energy effectiveness. J Eng Manufact 2022;236:1574-88.
3. Du Y, Yi Q, Li C, Liao L. Life cycle oriented low-carbon operation models of machinery manufacturing industry. J Clean Prod 2015;91:145-57.
4. Catalán N, Ramos-moore E, Boccardo A, Celentano D. Surface laser treatment of cast irons: a review. Metals 2022;12:562.
5. Yu Z, Li C, Chen Z, Li Y, Han X. Sensitivity analysis of laser quenching parameters of ASTM 1045 of disk laser based on response surface method. Met Mater Int 2021;27:1236-51.
6. Singh A, Harimkar SP. Laser surface engineering of magnesium alloys: a review. JOM 2012;64:716-33.
7. Chai L, Wu H, Zheng Z, et al. Microstructural characterization and hardness variation of pure Ti surface-treated by pulsed laser. J Alloys Compd 2018;741:116-22.
8. Chai L, Zhu Y, Hu X, et al. A strategy to introduce gradient equiaxed grains into Zr sheet by combining laser surface treatment, rolling and annealing. Script Mater 2021;196:113761.
9. Colombini E, Sola R, Parigi G, Veronesi P, Poli G. Laser quenching of ionic nitrided steel: effect of process parameters on microstructure and optimization. Metall and Mat Trans A 2014;45:5562-73.
10. Cao X, Shi L, Cai Z, Liu Q, Zhou Z, Wang W. Investigation on the microstructure and damage characteristics of wheel and rail materials subject to laser dispersed quenching. Appl Surf Sci 2018;450:468-83.
11. Chen Z, Zhu Q, Wang J, Yun X, He B, Luo J. Behaviors of 40Cr steel treated by laser quenching on impact abrasive wear. Opt Laser Technol 2018;103:118-25.
12. Li Z, Tong B, Zhang Q, Yao J, Kovalenko V. Microstructure refinement and properties of 1.0C-1.5Cr steel in a duplex treatment combining double quenching and laser surface quenching. Mater Sci Eng 2020;776:138994.
13. Zheng Y, Hu Q, Li C, et al. A novel laser surface compositing by selective laser quenching to enhance railway service life. Tribol Int 2017;106:46-54.
14. Ki H, So S. Process map for laser heat treatment of carbon steels. Opt Laser Technol 2012;44:2106-14.
15. Palmieri FL, Ledesma RI, Dennie JG, et al. Optimized surface treatment of aerospace composites using a picosecond laser. Comp Part B 2019;175:107155.
16. Alikhani S, Kazemi Zahabi M, Javad Torkamany M, Hasan Nabavi S. Time-dependent 3D modeling of the thermal analysis of the high-power diode laser hardening process. Opt Laser Technol 2020;128:106216.
17. Steen WM, Courtney C. Surface heat treatment of EnS steel using a 2kW continuous-wave CO2 laser. Metal Technol 1979;6:456-62.
18. Zhang T, Li L, Liang F, Yang B. Parameter optimization of laser die-surface hardening using the particle swarm optimization technique. Int J Adv Manuf Technol 2008;36:1104-12.
19. Lambiase F, Di Ilio A, Paoletti A. Prediction of laser hardening by means of neural network. Procedia CIRP 2013;12:181-6.
20. Li Y, Xiong M, He Y, Xiong J, Tian X, Mativenga P. Multi-objective optimization of laser welding process parameters: the trade-offs between energy consumption and welding quality. Opt Laser Technol 2022;149:107861.
21. Zhu Y, Peng T, Jia G, Zhang H, Xu S, Yang H. Electrical energy consumption and mechanical properties of selective-laser-melting-produced 316L stainless steel samples using various processing parameters. J Clean Prod 2019;208:77-85.
22. Cao H, Li Y, Li H, Zhang C, Ge W, Xing B. Multi-objective response evaluation for carbon emission and welding performance of laser welding process. Int J Adv Manuf Technol 2022;121:3005-23.
23. Wang GG, Shan S. Review of metamodeling techniques in support of engineering design optimization. J Mechan Design 2007;129:370-80.
24. Goel T, Haftka RT, Shyy W, Queipo NV. Ensemble of surrogates. Struct Multidisc Optim 2007;33:199-216.
25. Wu J, Zhang C, Lian K, Sun J, Zhang S. Processing parameter optimization of fiber laser beam welding using an ensemble of metamodels and MOABC. Front Mech Eng 2022;17:47.
26. Acar E. Effect of error metrics on optimum weight factor selection for ensemble of metamodels. Expert Syst Appl 2015;42:2703-9.
27. Song X, Sun G, Li G, Gao W, Li Q. Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Struct Multidisc Optim 2013;47:221-31.
28. Elbaz K, Shen S, Zhou A, Yin Z, Lyu H. Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH-type neural network. Engineering 2021;7:238-51.
29. Zhang X, Lin L, Xia Y, et al. Experimental study on wear of TBM disc cutter rings with different kinds of hardness. Tunn Undergr Space Technol 2018;82:346-57.
30. Wu J, Yu A, Chen Q, Wu M, Sun L, Yuan J. Tribological properties of bronze surface with dimple textures fabricated by the indentation method. J Eng Tribol 2020;234:1680-94.
31. Huang Z, Cao H, Zeng D, Ge W, Duan C. A carbon efficiency approach for laser welding environmental performance assessment and the process parameters decision-making. Int J Adv Manuf Technol 2021;114:2433-46.
32. Wu J, Lian K, Deng Y, Jiang P, Zhang C. Multi-objective parameter optimization of fiber laser welding considering energy consumption and bead geometry. IEEE Trans Automat Sci Eng 2021.
33. Peng T, Chen C. Influence of energy density on energy demand and porosity of 316L stainless steel fabricated by selective laser melting. Int J of Precis Eng and Manuf -Green Tech 2018;5:55-62.
34. Li J, Cao L, Hu J, Sheng M, Zhou Q, Jin P. A prediction approach of SLM based on the ensemble of metamodels considering material efficiency, energy consumption, and tensile strength. J Intell Manuf 2022;33:687-702.
35. Molian PA. Laser surface heat treatment of AISI 4340 steel: a microstructural study. Mater Sci Eng 1981;51:253-60.
36. Nasrollahi V, Penchev P, Batal A, Le H, Dimov S, Kim K. Laser drilling with a top-hat beam of micro-scale high aspect ratio holes in silicon nitride. J Mater Proc Technol 2020;281:116636.
37. Yang Y, Cao L, Wang C, Zhou Q, Jiang P. Multi-objective process parameters optimization of hot-wire laser welding using ensemble of metamodels and NSGA-II. Rob Compt-Int Manuf 2018;53:141-52.
38. Fernández-vicente A, Pellizzari M, Arias J. Feasibility of laser surface treatment of pearlitic and bainitic ductile irons for hot rolls. J Mater Proc Technol 2012;212:989-1002.
39. Zammit A, Abela S, Betts JC, Grech M. Discrete laser spot hardening of austempered ductile iron. Surf Coat Technol 2017;331:143-52.
40. Roy S, Zhao J, Shrotriya P, Sundararajan S. Effect of laser treatment parameters on surface modification and tribological behavior of AISI 8620 steel. Tribol Int 2017;112:94-102.
41. Babič M, Calì M, Nazarenko I, et al. Surface roughness evaluation in hardened materials by pattern recognition using network theory. Int J Interact Des Manuf 2019;13:211-9.
42. Yazici O, Yilmaz S. Investigation of effect of various processing temperatures on abrasive wear behaviour of high power diode laser treated R260 grade rail steels. Tribol Int 2018;119:222-9.
43. Lesyk D, Martinez S, Mordyuk B, et al. Combining laser transformation hardening and ultrasonic impact strain hardening for enhanced wear resistance of AISI 1045 steel. Wear 2020;462-463:203494.
44. Pantelis D, Pantazopoulos G, Antoniou S. Wear behavior of anti-galling surface textured gray cast iron using pulsed-CO2 laser treatment. Wear 1997;205:178-85.
45. Strano G, Hao L, Everson RM, Evans KE. Surface roughness analysis, modelling and prediction in selective laser melting. J Mater Proc Technol 2013;213:589-97.
46. Cao L, Li J, Hu J, Liu H, Wu Y, Zhou Q. Optimization of surface roughness and dimensional accuracy in LPBF additive manufacturing. Opt Laser Technol 2021;142:107246.
47. Cai X, Qiu H, Gao L, Li X, Shao X. A hybrid global optimization method based on multiple metamodels. EC 2018;35:71-90.
48. Rong Y, Zhang Z, Zhang G, et al. Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA. Opt Laser Eng 2015;67:94-104.
49. Kanti K, Srinivasa Rao P. Prediction of bead geometry in pulsed GMA welding using back propagation neural network. J Mater Proc Technol 2008;200:300-5.
50. Akbari M, Shojaeefard MH, Asadi P, Khalkhali A. Hybrid multi-objective optimization of microstructural and mechanical properties of B4C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-II. Trans Nonf Metal Soc China 2017;27:2317-33.
51. Akbari M, Asadi P, Zolghadr P, Khalkhali A. Multicriteria optimization of mechanical properties of aluminum composites reinforced with different reinforcing particles type. J Proc Mech Eng 2018;232:323-37.
52. Gopinath C, Lakshmanan P, Palani S. Fiber laser microcutting on duplex steel: parameter optimization by TOPSIS. Mater Manuf Proc 2022;37:985-94.
53. Gao Z, Shao X, Jiang P, et al. Parameters optimization of hybrid fiber laser-arc butt welding on 316L stainless steel using Kriging model and GA. Opt Laser Technol 2016;83:153-62.
54. Jiang P, Cao L, Zhou Q, Gao Z, Rong Y, Shao X. Optimization of welding process parameters by combining Kriging surrogate with particle swarm optimization algorithm. Int J Adv Manuf Technol 2016;86:2473-83.
55. Zhou Q, Rong Y, Shao X, Jiang P, Gao Z, Cao L. Optimization of laser brazing onto galvanized steel based on ensemble of metamodels. J Intell Manuf 2018;29:1417-31.
56. Zhang F, Zhou T. Process parameter optimization for laser-magnetic welding based on a sample-sorted support vector regression. J Intell Manuf 2019;30:2217-30.
57. Hwang C, Yoon K. Methods for multiple attribute decision making. Multiple attribute decision making. Berlin: Springer Berlin Heidelberg; 1981. pp. 58-191.
58. Omrani H, Alizadeh A, Emrouznejad A. Finding the optimal combination of power plants alternatives: A multi response Taguchi-neural network using TOPSIS and fuzzy best-worst method. J Clean Prod 2018;203:210-23.