REFERENCES

1. Huang, X. Y.; Zhao, C. Z.; Kong, W. J.; et al. Tailoring polymer electrolyte solvation for 600 Wh kg-1 lithium batteries. Nature 2025, 646, 343-50.

2. Fu, J.; Wang, C.; Wang, S.; et al. A cost-effective all-in-one halide material for all-solid-state batteries. Nature 2025, 643, 111-8.

3. Xu, R.; Xu, S.; Zhang, X.; et al. Potential-gated polymer integrates reversible ion transport and storage for solid-state batteries. Adv. Mater. 2025, e13365.

4. Zhang, S.; Zhao, F.; Li, L.; Sun, X. Solid-state electrolytes expediting interface-compatible dual-conductive cathodes for all-solid-state batteries. Energy. Environ. Sci. 2025, 18, 6530-9.

5. Chen, Y.; Qian, J.; Wang, K.; Li, L.; Wu, F.; Chen, R. Cutting-edge developments at the interface of inorganic solid-state electrolytes. Adv. Mater. 2025, 37, e2502653.

6. Pei, F.; Wu, L.; Zhang, Y.; et al. Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries. Nat. Commun. 2024, 15, 351.

7. Dai, P.; Liao, J.; Li, J.; et al. Structural instability of NCM-LATP composite cathode during co-sintering. Adv. Funct. Mater. 2025, 35, 2421775.

8. Liu, H.; Li, Y.; Dong, C.; et al. Fluorinated coating stabilizing halide solid electrolytes for all-solid-state lithium metal batteries. Energy. Storage. Mater. 2025, 75, 104107.

9. Sand, S. C.; Rupp, J. L. M.; Yildiz, B. A critical review on Li-ion transport, chemistry and structure of ceramic-polymer composite electrolytes for solid state batteries. Chem. Soc. Rev. 2025, 54, 178-200.

10. Zhu, J.; Bian, P.; Sun, G.; et al. Practical high-voltage lithium metal batteries enabled by the in-situ fabrication of main-chain fluorinated polymer electrolytes. Angew. Chem. Int. Ed. Engl. 2025, 64, e202424685.

11. Xu, W.; Zhou, L.; Lu, S.; He, J.; Xu, Y.; Tian, L. Fluorine-free gel polymer electrolyte for lithium oxide-rich solid electrolyte interphase and stable Li metal batteries. Nat. Commun. 2025, 16, 9308.

12. Xiong, X.; Jiang, G.; Li, H.; Chen, L.; Suo, L. All-electrochem-active all solid state batteries. Energy. Storage. Mater. 2025, 79, 104330.

13. Zhou, Q.; Yang, X.; Xiong, X.; et al. A solid electrolyte based on electrochemical active Li4Ti5O12 with PVDF for solid state lithium metal battery. Adv. Energy. Mater. 2022, 12, 2201991.

14. Du, J.; Chen, Z.; Peng, B.; et al. A solid-state electrolyte based on electrochemically active LiMn2O4 for lithium metal batteries. J. Mater. Chem. A. 2024, 12, 33241-8.

15. Peng, B.; Liu, Z.; Zhou, Q.; et al. A solid-state electrolyte based on Li0.95Na0.05FePO4 for lithium metal batteries. Adv. Mater. 2024, 36, e2307142.

16. Xu, C.; Peng, B.; Yang, W.; Tian, J.; Zhou, H. High energy density lithium battery systems: from key cathode materials to pouch cell design. Chem. Soc. Rev. 2025, 54, 10245-303.

17. Wang, R.; Wang, L.; Liu, R.; Li, X.; Wu, Y.; Ran, F. “Fast-charging” anode materials for lithium-ion batteries from perspective of ion diffusion in crystal structure. ACS. Nano. 2024, 18, 2611-48.

18. Zhang, Y.; Fraggedakis, D.; Gao, T.; et al. Lithium-ion intercalation by coupled ion-electron transfer. Science 2025, 390, eadq2541.

19. Halldin Stenlid, J.; Žguns, P.; Vivona, D.; et al. Computational insights into electrolyte-dependent Li-ion charge-transfer kinetics at the LixCoO2 interface. ACS. Energy. Lett. 2024, 9, 3608-17.

20. Song, A.; Zhang, W.; Ma, L.; et al. Decoupling ion-electron transport in thick solid-state battery electrodes. ACS. Energy. Lett. 2024, 9, 5027-36.

21. Zhao, F.; Zhang, S.; Wang, S.; et al. Anion sublattice design enables superionic conductivity in crystalline oxyhalides. Science 2025, 390, 199-204.

22. He, Y.; Wang, L.; He, X. Material-specific electric double layers: reviewing the theory to advance understanding of battery interfaces. Energy. Storage. Mater. 2025, 82, 104554.

23. Wang, Z.; Tang, X.; Yuan, S.; et al. Engineering vanadium pentoxide cathode for the zero-strain cation storage via a scalable intercalation-polymerization approach. Adv. Funct. Mater. 2021, 31, 2100164.

24. Zou, P.; Wang, C.; He, Y.; Xin, H. L. Broadening solid ionic conductor selection for sustainable and earth-abundant solid-state lithium metal batteries. Energy. Environ. Sci. 2023, 16, 5871-80.

25. Kim, H. m.; Kim, D. w.; Hara, K.; et al. Mixed anion effects on structural and electrochemical characteristics of Li4Ti5O12 for high-rate and durable anode materials. J. Mater. Chem. A. 2024, 12, 7107-21.

26. Zong, C.; Zhu, X.; Xu, Z.; et al. Isomeric dibenzoheptazethrenes for air-stable organic field-effect transistors. Angew. Chem. Int. Ed. Engl. 2021, 60, 16230-6.

27. Jin, Y.; Lin, R.; Li, Y.; et al. Revealing the influence of electron migration inside polymer electrolyte on Li+ transport and interphase reconfiguration for Li metal batteries. Angew. Chem. Int. Ed. Engl. 2024, 63, e202403661.

28. Cheng, Z.; Liu, M.; Ganapathy, S.; et al. Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries. Joule 2020, 4, 1311-23.

29. Kimura, Y.; Fujisaki, T.; Shimizu, T.; Nakamura, T.; Iriyama, Y.; Amezawa, K. Coating layer design principles considering lithium chemical potential distribution within solid electrolytes of solid-state batteries. Commun. Mater. 2024, 5, 125.

30. Yamamoto, K.; Iriyama, Y.; Asaka, T.; et al. Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem. Int. Ed. Engl. 2010, 49, 4414-7.

31. Tian, H. K.; Jalem, R.; Gao, B.; et al. Electron and ion transfer across interfaces of the NASICON-type LATP solid electrolyte with electrodes in all-solid-state batteries: a density functional theory study via an explicit interface model. ACS. Appl. Mater. Interfaces. 2020, 12, 54752-62.