REFERENCES

1. Chen, Z.; Zhi, C. Chalcogens for high-energy batteries. Nat. Rev. Mater. 2025, 10, 268-84.

2. Xiao, J.; Shi, F.; Glossmann, T.; Burnett, C.; Liu, Z. From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy. 2023, 8, 329-39.

3. Li, J.; Gao, L.; Pan, F.; et al. Engineering strategies for suppressing the shuttle effect in lithium-sulfur batteries. Nanomicro. Lett. 2023, 16, 12.

4. Vera, M. L.; Torres, W. R.; Galli, C. I.; Chagnes, A.; Flexer, V. Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth. Environ. 2023, 4, 149-65.

5. Zeng, X.; Li, M.; Abd El‐hady, D.; et al. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy. Mater. 2019, 9, 1900161.

6. Yang, Z.; Lu, Y.; Liu, X.; Li, F.; Chen, J. Application of high energy X-ray diffraction and Rietveld refinement in layered lithium transition metal oxide cathode materials. Nano. Res. 2023, 16, 9954-67.

7. Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433-56.

8. Duan, J.; Wang, K.; Teng, L.; et al. Nanofibrous covalent organic frameworks as the cathode, separator, and anode for batteries with high energy density and ultrafast-charging performance. ACS. Nano. 2024, 18, 29189-29202.

9. Jiang, F.; Du, Y. F.; Guo, J. X.; et al. Thermoresponsive solid electrolyte interphase enables safe lithium-sulfur batteries with high energy density. Energy. Environ. Sci. 2025, 18, 4925-4933.

10. Zhou, S.; Shi, J.; Liu, S.; et al. Visualizing interfacial collective reaction behaviour of Li-S batteries. Nature. 2023, 621, 75-81.

11. Yao, Y.; Rui, X.; Bai, R.; et al. Roadmap for next-generation electrochemical energy storage technologies: secondary batteries and supercapacitors. ACS. Nano. 2025, 19, 30568-30687.

12. Cao, R.; Yu, Y.; Li, C. Metal fluorides emerging as fast-charging and high-capacity cathodes from the viewpoint of open framework strategies. EnLab. 2025, 2, 240017.

13. Yari, S.; Conde Reis, A.; Pang, Q.; Safari, M. Performance benchmarking and analysis of lithium-sulfur batteries for next-generation cell design. Nat. Commun. 2025, 16, 5473.

14. Wu, Y.; Huang, J.; Zhang, Z.; et al. Recent advances in functionalized separators for shuttle-free and dendrite-free lithium/sodium-sulfur batteries. Energy. Mater. 2025, 5, 500027.

15. Wu, C. C.; Chan, T. C.; Chung, S. H. Metal-based composite sulfur cathodes for lithium-sulfur electrochemical cells. Commun. Mater. 2025, 6, 111.

16. Ye, C.; Li, H.; Chen, Y.; et al. The role of electrocatalytic materials for developing post-lithium metal||sulfur batteries. Nat. Commun. 2024, 15, 4797.

17. Yao, Z.; Zou, Y.; Liu, S.; et al. Reactivity descriptors for sulfur redox kinetics in lithium-sulfur batteries: from mechanistic insights to machine learning driven catalyst design. Chem. Soc. Rev. 2025, 54, 9161-91.

18. Huang, X.; Li, X.; Zhao, L.; et al. Manipulating sulfur redox kinetics in rechargeable metal-sulfur batteries: fundamental principles and universal methodologies. Adv. Mater. 2025, 37, 2419089.

19. Zhang, X.; Zhang, X.; Wang, X.; Cui, G.; Pan, H.; Sun, W. Engineering spin states of metal sites toward advanced lithium-sulfur batteries. Energy. Environ. Sci. 2025, 18, 3553-3567.

20. Zeng, L.; Zhu, J.; Chu, P. K.; et al. Catalytic effects of electrodes and electrolytes in metal-sulfur batteries: progress and prospective. Adv. Mater. 2022, 34, 2204636.

21. Chung, S.; Chang, C.; Manthiram, A. Progress on the critical parameters for lithium-sulfur batteries to be practically viable. Adv. Funct. Mater. 2018, 28, 1801188.

22. Liu, X.; Li, Z.; Liao, X.; et al. A three-dimensional nitrogen-doped graphene framework decorated with an atomic layer deposited ultrathin V2O5 layer for lithium sulfur batteries with high sulfur loading. J. Mater. Chem. A. 2020, 8, 12106-13.

23. Huang, L.; Li, J.; Liu, B.; et al. Electrode design for lithium-sulfur batteries: problems and solutions. Adv. Funct. Mater. 2020, 30, 1910375.

24. Fang, R.; Zhao, S.; Sun, Z.; Wang, D.; Cheng, H.; Li, F. More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

25. Lim, W.; Kim, S.; Jo, C.; Lee, J. A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics. Angew. Chem. Int. Ed. Engl. 2019, 58, 18746-57.

26. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy. 2016, 1, 16132.

27. Hong, H.; Che Mohamad, N. A. R.; Chae, K.; Marques Mota, F.; Kim, D. H. The lithium metal anode in Li-S batteries: challenges and recent progress. J. Mater. Chem. A. 2021, 9, 10012-38.

28. Han, Z.; Li, S.; Wu, Y.; Yu, C.; Cheng, S.; Xie, J. Challenges and key parameters in exploring the cyclability limitation of practical lithium-sulfur batteries. J. Mater. Chem. A. 2021, 9, 24215-40.

29. Ji, X.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-6.

30. Huang, X. Y.; Zhao, C. Z.; Kong, W. J.; et al. Tailoring polymer electrolyte solvation for 600 Wh kg-1 lithium batteries. Nature. 2025, 646, 343-50.

31. Wang, T.; He, J.; Zhu, Z.; et al. Heterostructures regulating lithium polysulfides for advanced lithium‐sulfur batteries. Adv. Mater. 2023, 35, 2303520.

32. Xia, S.; Xu, X.; Wu, W.; et al. Advancements in functionalized high-performance separators for lithium-sulfur batteries. Mater. Sci. Eng. R. Rep. 2025, 163, 100924.

33. Jung, S. Y.; Park, J. Y.; Yu, S. H. Recent advances in electrolyte design for optimized lithium polysulfides solvation in lithium-sulfur batteries. Energy. Mater. 2025, 5, 500125.

34. Zhou, Q.; Xiong, X.; Peng, J.; et al. Tailored engineering on the interface between lithium metal anode and solid-state electrolytes. Energy. Environ. Mater. 2024, 8, e12831.

35. Li, Z.; Zhou, C.; Hua, J.; et al. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

36. Wu, Q.; Chen, K.; Shadike, Z.; Li, C. Relay-type catalysis by a dual-metal single-atom system in a waste biomass derivative host for high-rate and durable Li-S batteries. ACS. Nano. 2024, 18, 13468-83.

37. Wu, Q.; Zhou, X.; Xu, J.; Cao, F.; Li, C. Adenine derivative host with interlaced 2D structure and dual lithiophilic-sulfiphilic sites to enable high-loading Li-S batteries. ACS. Nano. 2019, 13, 9520-32.

38. Wu, Q.; Yao, Z.; Zhou, X.; Xu, J.; Cao, F.; Li, C. Built-in catalysis in confined nanoreactors for high-loading Li-S batteries. ACS. Nano. 2020, 14, 3365-77.

39. Wu, Q.; Shadike, Z.; Xu, J.; Cao, F.; Li, C. Integrated reactor architecture of conductive network and catalytic nodes to accelerate polysulfide conversion for durable and high-loading Li-S batteries. Energy. Storage. Mater. 2023, 55, 73-83.

40. Liu, R.; Wei, Z.; Peng, L.; et al. Establishing reaction networks in the 16-electron sulfur reduction reaction. Nature. 2024, 626, 98-104.

41. Li, H.; Meng, R.; Ye, C.; et al. Developing high-power Li||S batteries via transition metal/carbon nanocomposite electrocatalyst engineering. Nat. Nanotechnol. 2024, 19, 792-9.

42. Wu, Q.; Zheng, Y.; Guan, X.; Xu, J.; Cao, F.; Li, C. Dynamical SEI reinforced by open-architecture MOF film with stereoscopic lithiophilic sites for high-performance lithium-metal batteries. Adv. Funct. Mater. 2021, 31, 2101034.

43. Zhou, J.; Holekevi Chandrappa, M. L.; Tan, S.; et al. Healable and conductive sulfur iodide for solid-state Li-S batteries. Nature. 2024, 627, 301-5.

44. Kim, J. T.; Su, H.; Zhong, Y.; et al. All-solid-state lithium-sulfur batteries through a reaction engineering lens. Nat. Chem. Eng. 2024, 1, 400-10.

45. Zheng, B.; Fan, J.; Chen, B.; et al. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519-603.

46. Liu, J.; Kong, X.; Zheng, L.; Guo, X.; Liu, X.; Shui, J. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS. Nano. 2020, 14, 1093-101.

47. Shuai, Z.; Zhu, Y.; Gao, P.; Han, Y. Rare earth elements resources and beneficiation: a review. Miner. Eng. 2024, 218, 109011.

48. Jiang, Y.; Fu, H.; Liang, Z.; Zhang, Q.; Du, Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem. Soc. Rev. 2024, 53, 714-63.

49. Su, P.; Song, F.; Cao, J.; Yan, C. H.; Tang, Y. Rare earth complex-based functional materials: from molecular design and performance regulation to unique applications. Acc. Chem. Res. 2025, 58, 218-30.

50. Zhou, B.; Shi, B.; Jin, D.; Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924-36.

51. Ghosh, B.; Vapnik, H.; Kim, H. E.; et al. Electrochemical separation and clean energy applications of rare earth elements. Chem. Rev. 2025, 125, 7965-8023.

52. Othman, A.; Gowda, A.; Andreescu, D.; et al. Two decades of ceria nanoparticle research: structure, properties and emerging applications. Mater. Horiz. 2024, 11, 3213-66.

53. Takada, R.; Yao, H. Praseodymium-doped cerium oxide (PrxCexO2-δ) nanoparticles with high water dispersibility: the nature of Pr-related optical transitions studied by MCD spectroscopy. J. Phys. Chem. C. 2025, 129, 5461-71.

54. Ochirkhuyag, T.; Hong, S. C.; Odkhuu, D. Intrinsic hard magnetism and thermal stability of a ThMn12-type permanent magnet. NPJ. Comput. Mater. 2022, 8, 193.

55. Carbonati, T.; Cionti, C.; Cosaert, E.; Nimmegeers, B.; Meroni, D.; Poelman, D. NIR emitting GdVO4:Nd nanoparticles for bioimaging: the role of the synthetic pathway. J. Alloys. Compd. 2021, 862, 158413.

56. Zhu, Q.; Sun, T.; Chung, M. N.; et al. Yb3+-sensitized upconversion and downshifting luminescence in Nd3+ ions through energy migration. Dalton. Trans. 2018, 47, 8581-4.

57. Zhang, X.; Chen, M.; Zhang, Q.; Liu, J.; Wu, Y. New insights into synergistic effects of La2O3 and nitrogen doped carbon for improved redox kinetics in lithium-sulfur batteries: a computational study. Appl. Surf. Sci. 2021, 563, 150172.

58. Han, X.; Zhang, Z.; Xu, X. Single atom catalysts supported on N-doped graphene toward fast kinetics in Li-S batteries: a theoretical study. J. Mater. Chem. A. 2021, 9, 12225-35.

59. Ren, Y.; Qi, Z.; Ma, X.; et al. First-principles study of the effect of mechanical strength on ion transport in La-doped LiF-SEI on the Li (001) surface. Mater. Today. Chem. 2021, 20, 100451.

60. Sun, R.; Hu, J.; Shi, X.; et al. Water-soluble cross-linking functional binder for lowcost and high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2104858.

61. Zheng, W.; Hu, X. G.; Zhang, C. F. Electrochemical properties of rechargeable lithium batteries with sulfur-containing composite cathode materials. Electrochem. Solid-State. Lett. 2006, 9, A364.

62. Dai, S.; Sun, C.; Zhang, Y.; et al. Carbon microspheres built of La2O3 quantum dots-implanted nanorods: superb hosts with ultra-long Li2Sn-catalysis durability. J. Colloid. Interface. Sci. 2023, 640, 320-8.

63. Yeh, P. H.; Chung, S. H. Incorporation of electronically and ionically conductive additives in high-loading sulfur cathodes in lean-electrolyte lithium-sulfur cells. Electrochim. Acta. 2024, 502, 144794.

64. Huang, Z.; Zhu, Y.; Kong, Y.; et al. Efficient Synergism of chemisorption and wackenroder reaction via heterostructured La2O3-Ti3C2Tx -embedded carbon nanofiber for high-energy lithium-sulfur pouch cells. Adv. Funct. Mater. 2023, 33, 2303422.

65. Xing, Y.; Zhang, M.; Guo, J.; et al. Effect of CeO2-x-CNT/S cathode on the electrochemical performance of lithium-sulfur batteries. J. Solid. State. Chem. 2022, 316, 123642.

66. Wang, Y.; Yu, H.; Bi, M.; et al. Gadolinium oxide nanorods decorated Ketjen black@sulfur composites as functional catalyzing polysulfides conversion in lithium/sulfur batteries. Int. J. Energy. Res. 2022, 46, 16050-60.

67. Mai, H.; Wang, Q.; Sun, L.; et al. Nonstoichiometric scandium oxide hybridized in N-doped porous graphitic carbon promotes the rate capability of lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 41426-37.

68. Wang, Y.; Yu, H.; Majeed, A.; et al. Yttrium oxide nanorods as electrocatalytic polysulfides traps for curbing shuttle effect in lithium-sulfur batteries. J. Alloys. Compd. 2022, 891, 162074.

69. Li, X.; Zhang, L.; Ding, Z.; He, Y. Ultrafine Nd2O3 nanoparticles doped carbon aerogel to immobilize sulfur for high performance lithium-sulfur batteries. J. Electroanal. Chem. 2017, 799, 617-24.

70. Li, X.; Ding, Z.; Zhang, L.; Tang, R.; He, Y. Enhanced performance of lithium sulfur batteries with sulfur embedded in Sm2O3 -doped carbon aerogel as cathode material. Electrochim. Acta. 2017, 241, 197-207.

71. Shu, M.; Dong, Y.; Ni, M.; et al. Strategically engineered metal cluster-rare earth oxide heterojunction catalyst for high-performance lean electrolyte lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2025, 17, 4961-71.

72. He, B.; Wang, Z.; Li, G.; Liu, S.; Gao, X. Perovskite transition metal oxide of nanofibers as catalytic hosts for lithium-sulfur battery. J. Alloys. Compd. 2022, 918, 165660.

73. Zou, K.; Zhou, T.; Chen, Y.; et al. Defect Engineering in a multiple confined geometry for robust lithium-sulfur batteries. Adv. Energy. Mater. 2022, 12, 2103981.

74. Feng, W.; Yang, H.; Pu, Z.; Zhang, L. Study of CNTs-MoS2/CeO2 composites for lithium-sulfur battery performance. Ionics. 2022, 28, 2781-91.

75. Arshad, H. M. U.; Liu, S.; Li, G. R.; Gao, X. P. La2MoO6 as an effective catalyst for the cathode reactions of lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 5247-5256.

76. Yang, T.; Xiao, J.; Sun, X.; Song, Y.; He, C. Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chin. Chem. Lett. 2025, 36, 109691.

77. Lin, Y.; Tang, W.; Wu, S.; et al. Alleviating the self-discharge and enhancing the polysulphides conversion kinetics with LaCO3OH nanocrystals decorated hierarchical porous carbon. Chem. Eng. J. 2023, 452, 139091.

78. Xiao, D.; Lu, C.; Chen, C.; Yuan, S. CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy. Storage. Mater. 2018, 10, 216-22.

79. Wang, H.; Zhang, B.; Zeng, X.; et al. 3D porous carbon nanofibers with CeO2-decorated as cathode matrix for high performance lithium-sulfur batteries. J. Power. Sources. 2020, 473, 228588.

80. Wei, Z.; Li, J.; Wang, R. Surface engineered polar CeO2-based cathode host materials for immobilizing lithium polysulfides in high-performance Li-S batteries. Appl. Surf. Sci. 2022, 580, 152237.

81. Azam, S.; Wei, Z.; Wang, R. Adsorption-catalysis design with cerium oxide nanorods supported nickel-cobalt-oxide with multifunctional reaction interfaces for anchoring polysulfides and accelerating redox reactions in lithium sulfur battery. J. Colloid. Interface. Sci. 2023, 635, 466-80.

82. Hou, Q.; Wang, K.; Zheng, W.; et al. Eliminating bandgap between Cu-CeO2-x heterointerface enabling fast electron transfer and redox reaction in Li-S batteries. Energy. Storage. Mater. 2023, 63, 102983.

83. Qi, W.; Jiang, W.; Ling, R.; Yang, C.; Wang, Y.; Cao, B. Highly active CeO2-x/Fe interfaces enable fast redox conversion of polysulfides for high-performance lithium-sulfur batteries. Electrochim. Acta. 2022, 419, 140402.

84. Fan, X.; Feng, Z.; Zeng, M.; et al. Tuning the surface structure of CeO2 nanoparticles by chlorine-doped strategy to improve the polysulfide reaction kinetic for lithium sulfur battery. Colloids. Surf. A:. Physicochem. Eng. Asp. 2023, 659, 130571.

85. Cui, J.; Li, Z.; Wang, G.; Guo, J.; Shao, M. Layered double hydroxides and their derivatives for lithium-sulfur batteries. J. Mater. Chem. A. 2020, 8, 23738-55.

86. Zhang, J.; Hu, H.; Li, Z.; Lou, X. W. D. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem. Int. Ed. Engl. 2016, 55, 3982-6.

87. Dai, C.; Hu, L.; Wang, M. Q.; et al. Uniform α-Ni(OH)2 hollow spheres constructed from ultrathin nanosheets as efficient polysulfide mediator for long-term lithium-sulfur batteries. Energy. Storage. Mater. 2017, 8, 202-8.

88. Dong, W.; Wu, Z.; Guo, Y.; et al. Construction transition metal hydroxides on pyridinic/pyrrolic nitrogen co-doped carbon as high performance cathodes for lithium-sulfur batteries. J. Power. Sources. 2025, 645, 237186.

89. Chen, L.; Cao, G.; Li, Y.; et al. A review on engineering transition metal compound catalysts to accelerate the redox kinetics of sulfur cathodes for lithium-sulfur batteries. Nanomicro. Lett. 2024, 16, 97.

90. Wang, X.; Han, J.; Luo, C.; et al. Coordinated adsorption and catalytic conversion of polysulfides enabled by perovskite bimetallic hydroxide nanocages for lithium-sulfur batteries. Small. 2021, 17, 2101538.

91. Tian, Y.; Zhao, Y.; Zhang, Y.; Ricardez-Sandoval, L.; Wang, X.; Li, J. Construction of oxygen-deficient La(OH)3 nanorods wrapped by reduced graphene oxide for polysulfide trapping toward high-performance lithium/sulfur batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 23271-23279.

92. Hao, Y.; Wang, L.; Liang, Y.; et al. Bifunctional semi-closed YF3-doped 1D carbon nanofibers with 3D porous network structure including fluorinating interphases and polysulfide confinement for lithium-sulfur batteries. Nanoscale. 2019, 11, 21324-39.

93. Wang, X.; Hao, Y.; Wang, G.; et al. YF3/CoF3 co-doped 1D carbon nanofibers with dual functions of lithium polysulfudes adsorption and efficient catalytic activity as a cathode for high-performance Li-S batteries. J. Colloid. Interface. Sci. 2022, 607, 922-32.

94. Liu, L.; Guo, Y.; Qi, Z.; et al. Confinement and electrocatalysis of cerium fluoride nanocages to boost the lithium-sulfur batteries performance. Small. Structures. 2022, 3, 2200050.

95. Yang, D.; Han, Y.; Li, M.; et al. Highly conductive quasi‐1D hexagonal chalcogenide perovskite Sr8Ti7S21 with efficient polysulfide regulation in lithium-sulfur batteries. Adv. Funct. Mater. 2024, 34, 2401577.

96. Hou, W.; Feng, P.; Guo, X.; et al. Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium-sulfur batteries. Adv. Mater. 2022, 34, 2202222.

97. Chen, M.; Huang, C.; Li, Y.; et al. Perovskite-type La0.56Li0.33TiO3 as an effective polysulfide promoter for stable lithium-sulfur batteries in lean electrolyte conditions. J. Mater. Chem. A. 2019, 7, 10293-302.

98. Kong, L.; Chen, X.; Li, B.; et al. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries. Adv. Mater. 2017, 30, 1705219.

99. Hao, Z.; Zeng, R.; Yuan, L.; et al. Perovskite La0.6Sr0.4CoO3-δ as a new polysulfide immobilizer for high-energy lithium-sulfur batteries. Nano. Energy. 2017, 40, 360-8.

100. Jin, Q.; Niu, Y.; Lin, S.; et al. La0.3Sr0.7Fe0.2Mn0.8O3/Ti3C2Tx sulfur host with high tap density enabling the high volumetric energy density of lithium-sulfur batteries. J. Alloys. Compd. 2023, 943, 169200.

101. Gonçalves, J. M. Santos, É. A.; Martins, P. R.; Silva, C. G.; Zanin, H. Emerging medium- and high-entropy materials as catalysts for lithium-sulfur batteries. Energy. Storage. Mater. 2023, 63, 102999.

102. Han, F.; Wang, Z.; Jin, Q.; et al. High-entropy alloy electrocatalysts bidirectionally promote lithium polysulfide conversions for long-cycle-life lithium-sulfur batteries. ACS. Nano. 2024, 18, 15167-76.

103. Du, M.; Geng, P.; Pei, C.; et al. High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. Engl. 2022, 61, e202209350.

104. Wang, Z.; Ge, H.; Liu, S.; Li, G.; Gao, X. High-entropy alloys to activate the sulfur cathode for lithium-sulfur batteries. Energy. Environ. Mater. 2022, 6, e12358.

105. Tian, L.; Zhang, Z.; Liu, S.; Li, G.; Gao, X. High-entropy perovskite oxide nanofibers as efficient bidirectional electrocatalyst of liquid-solid conversion processes in lithium-sulfur batteries. Nano. Energy. 2023, 106, 108037.

106. Zhou, L.; Liu, H.; Liu, J. X.; et al. Unconventional catalytic kinetics of dual field regulated pyrochlore-type high-entropy ceramics towards the Li2S4 intermediate. Energy. Environ. Sci. 2025, 18, 6809-22.

107. Mu, P.; Sun, C.; Gao, C.; et al. Dual network electrode binder toward practical lithium-sulfur battery applications. ACS. Energy. Lett. 2023, 8, 3733-41.

108. Bhattacharya, P.; Nandasiri, M. I.; Lv, D.; et al. Polyamidoamine dendrimer-based binders for high-loading lithium-sulfur battery cathodes. Nano. Energy. 2016, 19, 176-86.

109. Zhang, L.; Yan, H.; Zhou, J.; et al. High-performance organohydrogel artificial muscle with compartmentalized anisotropic actuation under microdomain confinement. Adv. Mater. 2023, 35, 2202193.

110. Wang, W.; Hua, L.; Zhang, Y.; Wang, G.; Li, C. A conductive binder based on mesoscopic interpenetration with polysulfides capturing skeleton and redox intermediates network for lithium sulfur batteries. Angew. Chem. Int. Ed. Engl. 2024, 63, e202405920.

111. Guo, R.; Yang, Y.; Huang, X. L.; et al. Recent advances in multifunctional binders for high sulfur loading lithium-sulfur batteries. Adv. Funct. Mater. 2023, 34, 2307108.

112. Han, P.; Chung, S. H.; Chang, C. H.; Manthiram, A. Bifunctional binder with nucleophilic lithium polysulfide immobilization ability for high-loading, high-thickness cathodes in lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 17393-9.

113. Zhao, B.; Zhang, Z.; Wang, Y.; Jin, Y.; Gao, H. A novel type of multifunctional binder for improved cycle stability of lithium-sulfur battery. J. Solid. State. Electrochem. 2019, 23, 1269-78.

114. Han, P.; Chung, S. H.; Manthiram, A. Designing a high-loading sulfur cathode with a mixed ionic-electronic conducting polymer for electrochemically stable lithium-sulfur batteries. Energy. Storage. Mater. 2019, 17, 317-24.

115. Wang, H.; Zheng, P.; Yi, H.; et al. Low-cost and environmentally friendly biopolymer binders for Li-S batteries. Macromolecules. 2020, 53, 8539-47.

116. Huang, Y.; Shaibani, M.; Gamot, T. D.; et al. A saccharide-based binder for efficient polysulfide regulations in Li-S batteries. Nat. Commun. 2021, 12, 5375.

117. Kim, S.; Cho, M.; Lee, Y. Multifunctional Chitosan-rGO network binder for enhancing the cycle stability of Li-S batteries. Adv. Funct. Mater. 2020, 30, 1907680.

118. Zhou, F.; Mei, Y.; Wu, Q.; Li, H.; Xu, J.; Chen, H. Sulfur electrode tolerance and polysulfide conversion promoted by the supramolecular binder with rare-earth catalysis in lithium-sulfur batteries. Energy. Storage. Mater. 2024, 67, 103315.

119. Zhou, F.; Mei, Y.; Wu, Q.; et al. Lewis acid-optimized hydrolysable catalytic binder with dynamic hydrogen-bonded framework for durable lithium-sulfur batteries. Chem. Eng. J. 2025, 507, 160009.

120. Su, Y. S.; Manthiram, A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. (Camb). 2012, 48, 8817.

121. Zheng, L.; Zhu, Z.; Kuai, Y.; et al. Modification of separators with neodymium oxide/graphene composite to enhance lithium-sulfur battery performance. J. Rare. Earths. 2024, 42, 1730-9.

122. Wen, G.; Zhang, X.; Shi, Z.; et al. Sphere-in-fiber hybrid of N-doped carbon/cerium dioxide as an interlayer material with superior electrocatalytic performance for lithium sulfide precipitation and conversion. J. Colloid. Interface. Sci. 2022, 619, 106-15.

123. Jin, L.; Chen, J.; Qian, X.; Cheng, J.; Hao, Q.; Zhang, K. CeO2-C nanorods obtained by high-temperature carbonization of Ce-MOF as separator coating for Li-S battery. Colloids. Surf. A:. Physicochem. Eng. Asp. 2023, 657, 130443.

124. Yu, Z.; Peng, L.; Kang, X.; Li, Y.; Li, A.; Chang, Y. First-principles investigation of the catalytic mechanism of CeO2/KB composite separator in Li-S batteries. J. Electroanal. Chem. 2024, 953, 118004.

125. Zhang, K.; Jin, L.; Chen, J.; et al. Ketjen Black@Ce-MOF derived KB@CeO2-C as separator coating for lithium sulfur batteries. J. Energy. Storage. 2024, 78, 110006.

126. Lai, X.; Chen, Q.; Wang, H.; et al. Metal-organic framework-derived heterostructural Bi-phased Sm2O3 as a novel sulfur immobilizer for high-performance lithium-sulfur batteries. J. Energy. Storage. 2023, 74, 109520.

127. Qian, X.; Hao, Q.; Zhao, S.; Jin, L.; Li, B.; Xu, H. Application of Y-MOF-CNT-derived Y2O3-C@CNT composites in lithium-sulfur battery separators. Langmuir. 2024, 40, 23529-37.

128. Zhang, Z.; Wang, F.; Li, Z.; et al. Construction of CeO2/Co/CNT electrocatalyst with adsorption-catalytic synergistic effect for the suppression of the shuttle effect in lithium sulfur batteries. J. Energy. Storage. 2024, 94, 112259.

129. Jin, L.; Zhang, K.; Chen, J.; et al. ZIF67@Ce-MOF derived Co-N-C@CeO2-C for separator modification of lithium sulfur batteries. Mater. Res. Bull. 2024, 175, 112785.

130. Wang, W.; Zhang, Q.; Wan, J.; Liu, J.; Wang, L.; He, M. Constructing honeycomb-structured LaCoO3 as an efficient polysulfide converter on the separator to achieve practical lithium-sulfur batteries. Appl. Surf. Sci. 2024, 661, 160031.

131. Wang, D.; Zhao, X.; Yin, D.; Du, M.; Qu, C.; Feng, M. Metal-organic frameworks derived Pr2O2S-doped porous carbon nanosheets as efficient adsorption-catalytic separator coating materials for lithium-sulfur batteries. J. Power. Sources. 2025, 635, 236540.

132. Sun, L.; Zhang, W.; Fu, J.; et al. Highly active rare earth sulfur oxides used for membrane modification of lithium sulfur batteries. Chem. Eng. J. 2023, 457, 141240.

133. Deng, N.; Peng, Z.; Tian, X.; et al. Yttrium trifluoride doped polyacrylonitrile based carbon nanofibers as separator coating layer for high performance lithium-metal batteries. J. Colloid. Interface. Sci. 2023, 634, 949-962.

134. Zhao, T.; Xiao, P.; Nie, S.; Luo, M.; Zou, M.; Chen, Y. Recent progress of metal-organic frameworks based high performance batteries separators: a review. Coord. Chem. Rev. 2024, 502, 215592.

135. Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Rational design of MOF-based materials for next-generation rechargeable batteries. Nanomicro. Lett. 2021, 13, 203.

136. Xie, Z.; Cao, B.; Yue, X.; et al. Metal organic frameworks-based cathode materials for advanced Li-S batteries: a comprehensive review. Nano. Res. 2024, 17, 2592-618.

137. Zhao, R.; Ren, H.; Si, Y.; Li, G.; Fu, Y. MOF801(Ce)-modified polypropylene separator as efficient barrier for lithium-organosulfide batteries. Electrochim. Acta. 2023, 447, 142116.

138. Song, C. L.; Luo, J. R.; Ma, L. Y.; et al. Dendrite-free lithium metal batteries achieved with Ce-MOF membrane coating with one-dimensional continuous oxygen-containing channels for rapid migration of Li ions. J. Mater. Chem. A. 2022, 10, 18248-55.

139. Su, Y.; Wang, W.; Wang, W.; Wang, A.; Huang, Y.; Guan, Y. Cerium-based MOF as a separator coating for high-performance lithium-sulfur batteries. J. Electrochem. Soc. 2022, 169, 030528.

140. Jin, H. G.; Wang, M.; Wen, J. X.; et al. Oxygen vacancy-rich mixed-valence cerium MOF: an efficient separator coating to high-performance lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 3899-910.

141. Hao, Z.; Chen, J.; Lu, X.; et al. Precisely visit the performance modulation of functionalized separator in Li-S batteries via consecutive multiscale analysis. Energy. Storage. Mater. 2022, 49, 85-92.

142. Zhou, R.; Ren, Y.; Li, W.; et al. Rare earth single-atom catalysis for high-performance Li-S full battery with ultrahigh capacity. Angew. Chem. Int. Ed. Engl. 2024, 63, e202405417.

143. Xiao, P.; Yun, X.; Chen, Y.; et al. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem. Soc. Rev. 2023, 52, 5255-316.

144. Li, X.; Zhao, R.; Fu, Y.; Manthiram, A. Nitrate additives for lithium batteries: mechanisms, applications, and prospects. eScience. 2021, 1, 108-23.

145. Chen, W.; Li, B.; Zhao, C.; et al. Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. Angew. Chem. Int. Ed. Engl. 2020, 59, 10732-45.

146. Deng, T.; Wang, J.; Zhao, H.; et al. Dynamically regulating polysulfide degradation via organic sulfur electrolyte additives in lithium-sulfur batteries. Adv. Energy. Mater. 2024, 14, 2402319.

147. Ye, Y.; Song, M. K.; Xu, Y.; et al. Lithium nitrate: a double-edged sword in the rechargeable lithium-sulfur cell. Energy. Storage. Mater. 2019, 16, 498-504.

148. Liu, S.; Li, G. R.; Gao, X. P. Lanthanum nitrate as electrolyte additive to stabilize the surface morphology of lithium anode for lithium-sulfur battery. ACS. Appl. Mater. Interfaces. 2016, 8, 7783-9.

149. Hao, X.; Mao, Y.; Zhu, T.; et al. Yttrium-containing solid electrolyte interphase safeguards lithium anodes in lithium-sulfur batteries. ACS. Sustainable. Chem. Eng. 2024, 12, 3691-701.

150. Yen, Y. J.; Manthiram, A. Anode-free lithium-sulfur batteries with a rare-earth triflate as a dual-function electrolyte additive. ACS. Appl. Mater. Interfaces. 2024, 16, 34997-5005.

151. Xing, C.; Chen, H.; Qian, S.; et al. Regulating liquid and solid-state electrolytes for solid-phase conversion in Li-S batteries. Chem. 2022, 8, 1201-30.

152. Kim, J. T.; Rao, A.; Nie, H. Y.; et al. Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life. Nat. Commun. 2023, 14, 6404.

153. Song, S.; He, F.; Xia, Q.; et al. Research advances in rare-earth-based solid electrolytes for all-solid-state batteries. Small. 2025, 21, 2502008.

154. Gicha, B. B.; Tufa, L. T.; Nwaji, N.; Hu, X.; Lee, J. Advances in all-solid-state lithium-sulfur batteries for commercialization. Nanomicro. Lett. 2024, 16, 172.

155. Su, Y.; Ren, S.; Lin, Q.; et al. In situ solid electrolyte ionic pathway formation in high sulfur loading cathodes for high-performance all-solid-state lithium-sulfur batteries. Adv. Energy. Mater. 2025, 15, 2500363.

156. Liang, F.; Wang, S.; Liang, Q.; et al. Insight into all-solid-state Li-S batteries: challenges, advances, and engineering design. Adv. Energy. Mater. 2024, 14, 2401959.

157. Shi, C.; Takeuchi, S.; Alexander, G. V.; et al. High sulfur loading and capacity retention in bilayer garnet sulfurized-polyacrylonitrile/lithium-metal batteries with gel polymer electrolytes. Adv. Energy. Mater. 2023, 13, 2301656.

158. Shi, C.; Hamann, T.; Takeuchi, S.; et al. 3D asymmetric bilayer garnet-hybridized high-energy-density lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2022, 15, 751-60.

159. Shi, C.; Alexander, G. V.; O’Neill, J.; Duncan, K.; Godbey, G.; Wachsman, E. D. All-solid-state garnet type sulfurized polyacrylonitrile/lithium-metal battery enabled by an inorganic lithium conductive salt and a bilayer electrolyte architecture. ACS. Energy. Lett. 2023, 8, 1803-10.

160. Liu, Y.; Han, J.; Baek, D. H.; Woo Kim, H.; Ahn, J. H.; Kim, J. K. Unlocking high-energy solid-state lithium-sulfur batteries with an innovative double-layer hybrid solid electrolyte. Chem. Eng. J. 2024, 496, 153647.

161. Zhu, P.; Yan, C.; Zhu, J.; et al. Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy. Storage. Mater. 2019, 17, 220-5.

162. Wang, L.; Yin, X.; Li, B.; Zheng, G. W. Mixed ionically/electronically conductive double-phase interface enhanced solid-state charge transfer for a high-performance all-solid-state Li-S battery. Nano. Lett. 2021, 22, 433-40.

163. Luo, Y.; Dong, D.; Zhou, J.; Wang, Y.; Xue, Z.; Jiang, X. Solid-state lithium-sulfur battery chemistries achieving excellent room-temperature cycle performance by high-quality Li7La3Zr2O12-based electrolyte. J. Alloys. Compd. 2023, 935, 168112.

164. Ma, K.; Chen, B.; Li, C. X.; Thangadurai, V. Improvement of the Li-ion conductivity and air stability of the Ta-doped Li7La3Zr2O12 electrolyte via Ga co-doping and its application in Li-S batteries. J. Mater. Chem. A. 2024, 12, 3601-15.

165. Wang, S.; Li, M.; Yan, G.; et al. Squaraine-linked zwitterionic COF modified LLZTO nanoparticles for high performance polymer composite electrolytes in Li-S batteries. Nanoscale. 2023, 15, 12961-71.

166. Lv, Y.; Zhang, T.; Hu, Z.; et al. High critical current density in Li6.4La3Zr1.4Ta0.6O12 electrolyte via interfacial engineering with complex hydride. Rare. Metals. 2023, 43, 692-701.

167. Ruan, Y.; Lu, Y.; Huang, X.; et al. Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state batteries. J. Mater. Chem. A. 2019, 7, 14565-74.

168. Nomura, Y.; Yamamoto, K. Advanced characterization techniques for sulfide-based solid-state lithium batteries. Adv. Energy. Mater. 2023, 13, 2203883.

169. Ren, D.; Lu, L.; Hua, R.; et al. Challenges and opportunities of practical sulfide-based all-solid-state batteries. eTransportation. 2023, 18, 100272.

170. Liu, S.; Zhou, L.; Zhong, T.; Wu, X.; Neyts, K. Sulfide/polymer composite solid-state electrolytes for all-solid-state lithium batteries. Adv. Energy. Mater. 2024, 14, 2403602.

171. Zhao, B.; Zhou, C.; Chen, P.; Gao, X. Synergistic interfacial optimization for high-sulfur-content all-solid-state lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2024, 16, 4679-88.

172. Mirtaleb, A.; Wang, R. A highly stable and conductive cerium‐doped Li7P3S11 glass‐ceramic electrolyte for solid‐state lithium-sulfur batteries. J. Am. Ceram. Soc. 2024, 107, 3800-12.

173. Shi, X.; Zeng, Z.; Sun, M.; et al. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state lithium-sulfur battery. Nano. Lett. 2021, 21, 9325-31.

174. Li, Y.; Lu, Y.; Adelhelm, P.; Titirici, M. M.; Hu, Y. S. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 2019, 48, 4655-87.