REFERENCES
1. Quilty, C. D.; Wu, D.; Li, W.; et al. Electron and ion transport in lithium and lithium-ion battery negative and positive composite electrodes. Chem. Rev. 2023, 123, 1327-63.
2. Deng, L.; Liu, Y.; Qi, H.; et al. A nanoengineered lithium-hosting carbon/zinc oxide composite electrode material for efficient non-aqueous lithium metal batteries. Nat. Nanotechnol. 2025, 20, 1439-48.
3. Huang, J.; Yang, Q.; Hu, A.; et al. Enhanced specific energy in fast-charging lithium-ion batteries negative electrodes via Ti-O covalency-mediated low potential. Nat. Commun. 2025, 16, 6243.
4. Lin, F.; Luo, H.; Li, L.; et al. Synthesis of isolated Ru-O3 sites on hexagonal close-packed intermetallic penta-metallene for hydrogen oxidation electrocatalysis. Nat. Synth. 2024, 4, 399-409.
5. Jain, R.; Lakhnot, A. S.; Bhimani, K.; et al. Nanostructuring versus microstructuring in battery electrodes. Nat. Rev. Mater. 2022, 7, 736-46.
6. Singhvi, C.; Sharma, G.; Verma, R.; et al. Tuning the electronic structure and SMSI by integrating trimetallic sites with defective ceria for the CO2 reduction reaction. Proc. Natl. Acad. Sci. U. S. A. 2025, 122, e2411406122.
7. Song, N.; Ma, J.; Liang, Y.; et al. Phase and orbital engineering effectuating efficient adsorption and catalysis toward high-energy lithium-sulfur batteries. Adv. Mater. 2025, 37, 2420588.
8. Bai, L.; Xu, Y.; Liu, Y.; et al. Metal-organic framework glass stabilizes high-voltage cathodes for efficient lithium-metal batteries. Nat. Commun. 2025, 16, 3484.
9. Zhang, Y.; Zhang, Y.; Zhang, H.; et al. Defect engineering in metal sulfides for energy conversion and storage. Coord. Chem. Rev. 2021, 448, 214147.
10. Yun, Q.; Ge, Y.; Shi, Z.; et al. Recent progress on phase engineering of nanomaterials. Chem. Rev. 2023, 123, 13489-692.
11. Sung, J.; Kim, N.; Ma, J.; et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nat. Energy. 2021, 6, 1164-75.
12. Jin, H.; Zhang, Y.; Cao, Z.; Liu, J.; Ye, S. Atomically dispersed Sn on core‐shell MoS2 nanoreactors as Mott‐Schottky phase junctions for efficient electrocatalytic hydrogen evolution. Adv. Mater. 2025, 37, 2502977.
13. Kang, J.; Yang, X.; Hu, Q.; Cai, Z.; Liu, L. M.; Guo, L. Recent progress of amorphous nanomaterials. Chem. Rev. 2023, 123, 8859-941.
14. Liu, S.; Yan, L.; Huang, J.; Zhang, Q.; Zhou, B. Controlling upconversion in emerging multilayer core-shell nanostructures: from fundamentals to frontier applications. Chem. Soc. Rev. 2022, 51, 1729-65.
15. Hong, S.; Jin, S.; Deng, Y.; et al. Efficient scalable hydrothermal synthesis of MnO2 with controlled polymorphs and morphologies for enhanced battery cathodes. ACS. Energy. Lett. 2023, 8, 1744-51.
16. Zhu, K.; Yang, H.; Guo, G.; et al. Pd Single atoms/clusters at the oxygen defect-rich WOxC nanowire structure facilitate H* adsorption and desorption for efficient and stable hydrogen evolution reaction. ACS. Catal. 2025, 15, 9563-73.
17. Song, Y.; Zhou, Z.; Cui, B.; et al. High‐temperature long‐term cycling capability of lithium batteries enabled by releasing local constriction. Angew. Chem. Int. Ed. Engl. 2025, 64, e202510172.
18. Liu, F.; Fan, Z. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem. Soc. Rev. 2023, 52, 1723-72.
19. Kang, S.; Wang, C.; Chen, J.; Meng, T.; E, J. Progress on solvo/hydrothermal synthesis and optimization of the cathode materials of lithium-ion battery. J. Energy. Storage. 2023, 67, 107515.
20. Jiang, Y.; Zou, Q.; Liu, S.; et al. The Li3V2(PO4)3@C materials prepared by freeze-drying assisted sol-gel method for an aqueous zinc ion hybrid battery. J. Electroanal. Chem. 2021, 900, 115685.
21. Li, Q.; Jiao, Q.; Li, Z.; et al. Sandwich‐like MXene@Mn3O4@PPy hollow microspheres synergistically enabled ultra-long cycling life in aqueous zinc ion batteries. Small. 2024, 21, 2409217.
22. Choi, S.; Kim, S.; Hwang, C.; et al. Plasma assisted hydrothermal synthesis of 2D & 3D Water Intercalated V2O5 nanosheet clusters for high performing aqueous zinc ion battery. Small. Struct. 2025, 6, 2500269.
23. Lei, Y.; Li, S.; Du, M.; et al. Preparation of double‐shell Si@SnO2@C nanocomposite as anode for lithium‐ion batteries by hydrothermal method. Rare. Metals. 2023, 42, 2972-81.
24. Liu, Y.; Tian, X.; Han, Y. C.; Chen, Y.; Hu, W. High-temperature shock synthesis of high-entropy-alloy nanoparticles for catalysis. Chin. J. Catal. 2023, 48, 66-89.
25. Huang, W.; Zhu, X.; Zhu, H.; et al. High temperature shock (HTS) synthesis of carbon-based nanomaterials for electrochemical applications. Carbon. Neutral. 2025, 4, e189.
26. Cui, X.; Liu, Y.; Chen, Y. Ultrafast micro/nano-manufacturing of metastable materials for energy. Natl. Sci. Rev. 2024, 11, nwae033.
27. Zeng, C.; Duan, C.; Guo, Z.; et al. Ultrafastly activated needle coke as electrode material for supercapacitors. Prog. Nat. Sci:. Mater. Int. 2022, 32, 786-92.
28. Hua, Y.; Li, X.; Li, J.; et al. Fast fabrication of a hierarchical nanostructured multifunctional ferromagnet. Science. 2024, 385, 634-41.
29. Choi, C. H. â.; Shin, J.; Eddy, L.; et al. Flash-within-flash synthesis of gram-scale solid-state materials. Nature. Chem. 2024, 16, 1831-7.
30. Silva, K. J.; Wyss, K. M.; Teng, C. H.; Cheng, Y.; Eddy, L. J.; Tour, J. M. Graphene derived from municipal solid waste. Small. 2024, 21, 2311021.
31. Liu, S.; Shen, Y.; Zhang, Y.; et al. Extreme environmental thermal shock induced dislocation‐rich Pt nanoparticles boosting hydrogen evolution reaction. Adv. Mater. 2021, 34, 2106973.
32. Chen, W.; Cheng, Y.; Chen, J.; et al. Nondestructive flash cathode recycling. Nat. Commun. 2024, 15, 6250.
33. Wang, J.; Xiao, G.; Gao, N.; et al. Highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst in a high-temperature shockwave method. Fuel. 2023, 338, 127312.
34. Hu, X.; Zuo, D.; Cheng, S.; et al. Ultrafast materials synthesis and manufacturing techniques for emerging energy and environmental applications. Chem. Soc. Rev. 2023, 52, 1103-28.
35. Guo, Z.; Liu, Z.; Zhang, J.; et al. Joule heating ultrafast synthesis. ACS. Appl. Energy. Mater. 2025, 8, 9926-37.
36. Zou, J.; Tang, L.; Kang, L. Innovative heating for the nano age: exploring the potentials of carbothermal shock. ACS. Nano. 2025, 19, 152-86.
37. Qiu, Y.; Hu, Z.; Li, H.; Ren, Q.; Chen, Y.; Hu, S. Hybrid electrocatalyst Ag/Co/C via flash Joule heating for oxygen reduction reaction in alkaline media. Chem. Eng. J. 2022, 430, 132769.
38. Dou, S.; Xu, J.; Cui, X.; et al. High-temperature shock enabled nanomanufacturing for energy-related applications. Adv. Energy. Mater. 2020, 10, 2001331.
39. Zhao, P.; Wu, X.; Zhang, Y.; et al. Ultrafast thermal engineering in energy materials: design, recycling, and future directions. ACS. Nano. 2025, 19, 17199-227.
40. Dong, Y.; Rao, Y.; Liu, H.; et al. Highly efficient chemical production via electrified, transient high-temperature synthesis. eScience. 2024, 4, 100253.
41. Wang, C.; Li, Z.; Miao, Z.; et al. A soluble precursor facilitates ultra-fast synthesis of O3 layered oxides for sodium-ion batteries. Sci. China. Mater. 2025, 68, 1967-73.
42. Liu, Y.; Xu, Y.; Tian, Y.; et al. Frank partial dislocation pinning effect engineered IrNi alloy nanoparticles for water splitting. ACS. Catal. 2025, 15, 3378-90.
43. Zhang, L.; Ma, M.; Hu, Z.; et al. Coupling joule heating with vibration ball milling for synthesizing carbon-supported NixFex nanoparticles achieving efficient oxygen evolution and alkaline water electrolysis. ACS. Appl. Eng. Mater. 2024, 2, 2919-32.
44. Mazo, I.; Palmieri, B.; Martone, A.; Giordano, M.; Sglavo, V. M. Flash sintering in metallic ceramics: finite element analysis of thermal runaway in tungsten carbide green bodies. J. Mater. Res. Technol. 2023, 23, 5993-6004.
45. Shan, Y.; Li, X.; Zhao, W.; et al. Programmable and rapid fabrication of complex-shape ceramics. Nat. Commun. 2024, 15, 9973.
46. Lang, C.; Xu, Y.; Yao, X. Perfecting HER catalysts via defects: recent advances and perspectives. Chin. J. Catal. 2024, 64, 4-31.
47. Reynaud, M.; Serrano-Sevillano, J.; Casas-Cabanas, M. Imperfect battery materials: a closer look at the role of defects in electrochemical performance. Chem. Mater. 2023, 35, 3345-63.
48. Zhao, Y.; Du, H.; Kang, Y.; et al. Spent battery regeneration for better recycling. Nat. Rev. Mater. 2025, 10, 722-4.
49. Wang, R.; Chen, X.; Huang, Z.; et al. Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials. Nat. Commun. 2021, 12, 3085.
50. Zong, J.; Liang, Y.; Liu, F.; et al. Engineering twin structures and substitutional dopants in ZnSe0.7Te0.3 anode material for enhanced sodium storage performance. Nat. Commun. 2025, 16, 4406.
51. Zou, G.; Wang, J.; Sun, Y.; et al. A nanotwinned-alloy strategy enables fast sodium deposition dynamics. Nat. Commun. 2025, 16, 1795.
52. Zhong, H.; Zeng, C.; Lai, J.; et al. Enhanced oxygen evolution by activating vacancy defects on metal-organic framework-derived Co3O4/NC. Carbon. Neutralization. 2025, 4, e70030.
53. Zhao, M.; Li, S.; Wu, X.; Sun, L. Regulating oxygen vacancies in ammonium vanadate electrode materials for advanced aqueous zinc ion batteries. iScience. 2024, 27, 110926.
54. Liang, J.; Jiang, L.; Liu, H.; et al. Engineering interfacial oxygen vacancies of Zn-Cr sites for CO2 activation and hydrogenation. ACS. Catal. 2025, 15, 7340-50.
55. Luo, J.; Zhang, J.; Guo, Z.; et al. Coupling antisite defect and lattice tensile stimulates facile isotropic Li‐ion diffusion. Adv. Mater. 2024, 36, 2405956.
56. Liu, Z.; Zeng, C.; Zhang, J.; et al. Twin boundaries induced by high-temperature shock boost the structural stability of Li-rich layered-oxide. J. Mater. Chem. A. 2024, 12, 23712-23722.
57. Guo, Z.; Jiang, H.; Sun, X.; et al. Ultrafast non-equilibrium phase transition induced twin boundaries of spinel lithium manganate. Adv. Energy. Mater. 2023, 14, 2302484.
58. Zhu, W.; Zhang, J.; Luo, J.; et al. Ultrafast non-equilibrium synthesis of cathode materials for Li-ion batteries. Adv. Mater. 2022, 35, 2208974.
59. Xiao, J.; Chen, Y.; Cai, C.; et al. Flash joule heating synthesis of nitrogen-rich defective g‐C3N4 for highly efficient photocatalytic hydrogen evolution. Small. 2025, 21, 2503335.
60. Tian, L.; Hu, F.; Dong, E.; et al. Defect-mediated heteroepitaxial Co-regeneration strategy for direct regeneration of spent cathodes materials. Adv. Energy. Mater. 2025, 15, e02546.
61. Lv, X.; Lin, J.; Sun, X.; et al. Direct recycling of spent LiFePO4 cathodes through photocatalytic correction of anti-site defects. Adv. Mater. 2025, 37, 2503398.
62. Li, Y.; Cai, J.; Wang, J.; et al. A comprehensive review on reductive recycling of cathode materials of spent lithium-ion batteries. Chemistry. 2024, 30, e202400566.
63. Bin Abu Sofian, A. D. A.; Majid, S.; Kang, K.; Kim, J. K.; Show, P. Upcycling and recycling of spent battery waste for a sustainable future: progress and perspectives. Prog. Mater. Sci. 2025, 153, 101478.
64. Biswal, B. K.; Zhang, B.; Thi Minh Tran, P.; Zhang, J.; Balasubramanian, R. Recycling of spent lithium-ion batteries for a sustainable future: recent advancements. Chem. Soc. Rev. 2024, 53, 5552-92.
65. Fan, M.; Chang, X.; Meng, Q.; Wan, L.; Guo, Y. Progress in the sustainable recycling of spent lithium-ion batteries. SusMat. 2021, 1, 241-54.
66. Tang, Y.; Yang, Y.; Pan, M.; et al. Critical review of thermal reduction processes for sustainable recovery of valuable metals from cathode materials in spent lithium-ion batteries. Adv. Funct. Mater. 2025, e13322.
67. Yin, Y. C.; Li, C.; Hu, X.; et al. Rapid, direct regeneration of spent LiCoO2 cathodes for Li-ion batteries. ACS. Energy. Lett. 2023, 8, 3005-12.
68. Cheng, Y.; Chen, J.; Chen, W.; et al. Rapid electrothermal rejuvenation of spent lithium cobalt oxide cathode. Energy. Environ. Sci. 2025, 18, 6085-93.
69. Guo, Y.; Yao, Y.; Guo, C.; et al. Atomistic observation and transient reordering of antisite Li/Fe defects toward sustainable LiFePO4. Energy. Environ. Sci. 2024, 17, 7749-61.
70. Zheng, S. H.; Wang, X. T.; Gu, Z. Y.; et al. Direct and rapid regeneration of spent LiFePO4 cathodes via a high-temperature shock strategy. J. Power. Sources. 2023, 587, 233697.
71. Luo, J.; Zhang, J.; Guo, Z.; et al. Recycle spent graphite to defect-engineered, high-power graphite anode. Nano. Res. 2022, 16, 4240-5.
72. Luan, C.; Jiang, L.; Zheng, X.; et al. Direct observation of the ultrafast formation of cation-disordered rocksalt oxides as regenerable cathodes for lithium-ion batteries. Chem. Eng. J. 2023, 462, 142180.
73. Yang, M.; Lin, Y.; Chen, P.; et al. Unlocking ultrafast-kinetics asymmetric heterojunction with multi-anionic redox chemistry enables high energy/power density and low-temperature zinc-ion batteries. Angew. Chem. Int. Ed. Engl. 2025, 64, e202510907.
74. Ni, J.; Shi, Z.; Bai, J.; et al. Heterointerface anchored Ir with localized strong orbital coupling for durable proton exchange membrane water electrolysis. Angew. Chem. Int. Ed. Engl. 2025, 64, e202509985.
75. Dong, X.; Chen, X.; Tong, X.; et al. Red/black phosphorus heterostructure anchored on graphene for lithium-sulfur batteries with accelerated conversion kinetics and improved long-term stability. Chem. Eng. J. 2025, 519, 164704.
76. Tatarinov, D. A.; Schleusener, A.; Krahne, R. Controlling energy flow in perovskite heterostructures through dimensionality and phase engineering. Adv. Sci. (Weinh). 2025, 12, e05971.
78. Zhao, Z.; Sun, J.; Li, X.; Zhang, Z.; Meng, X. Joule heating synthesis of NiFe alloy/MoO2 and in-situ transformed (Ni,Fe)OOH/MoO2 heterostructure as effective complementary electrocatalysts for overall splitting in alkaline seawater. Appl. Catal. B:. Environ. 2024, 340, 123277.
79. Qin, X.; Yu, C.; Zhou, W.; Xu, Z.; Chang, J.; Wang, X. Joule heating: a versatile and sustainable heating strategy with diverse applications in materials science and waste management. J. Mater. Chem. A. 2025, 13, 12828-54.
80. Huang, P.; Guo, Z.; Li, Z.; et al. Spatiotemporal evolution in hard carbon synthesis via electrothermal coupling strategy for high-performance sodium-ion batteries. Adv. Mater. 2025, 37, 2507521.
81. Yan, D.; Li, H.; Yang, A.; et al. Ultrafast synthesis of vanadium-based oxides with crystalline-amorphous heterostructure for advanced aqueous zinc-ion batteries. Chem. Eng. J. 2025, 504, 158966.
82. Zhu, W.; Su, H.; Bai, P.; et al. A layered/spinel heterostructured cathode for Li-ion batteries prepared by ultrafast Joule heating. Chem. Eng. J. 2024, 480, 148045.
83. Chen, S.; Ma, J.; Chen, Q.; et al. Phase junction induction through atomic ratio tuning of molybdenum carbides for enhanced stepwise iodine conversion. Adv. Funct. Mater. 2025, 35, 2505201.
84. Dong, H.; Wang, L.; Cheng, Y.; et al. Flash joule heating: a promising method for preparing heterostructure catalysts to inhibit polysulfide shuttling in Li-S batteries. Adv. Sci. (Weinh). 2024, 11, 2405351.
85. Kar, N.; Skrabalak, S. E. Synthetic methods for high-entropy nanomaterials. Nat. Rev. Mater. 2025, 10, 638-53.
86. Yu, L.; Zeng, K.; Li, C.; et al. High‐entropy alloy catalysts: from bulk to nano toward highly efficient carbon and nitrogen catalysis. Carbon. Energy. 2022, 4, 731-61.
87. Shi, W.; Liu, H.; Liu, S.; et al. Heterostructure engineering in high-entropy alloy catalysts. SusMat. 2024, 5, e261.
88. Du, M.; Li, K.; Yu, N.; et al. Ultrafast preparation of high-entropy NASICON cathode enables stabilized multielectron redox and wide-temperature (-50-60 °C) workability in sodium-ion batteries. Adv. Mater. 2025, 37, 2418219.
89. He, X.; Zeng, X.; Wang, W.; et al. A novel rock-salt structure high-entropy oxide Fe0.2Co0.2Ni0.2Cu0.2Zn0.2O as a highly reversible lithium storage material. Nano. Res. 2025, 18, 94907784.
90. Zou, X.; Zhi, S.; Pang, B.; et al. Dual-confinement strategy improves the stability of high-entropy alloys in ultra-large current zinc-air batteries. Energy. Environ. Mater. 2025, 8, e70057.
91. Wang, P.; Guo, S.; Xu, Y.; et al. Upcycling spent cathodes from Li-ion batteries into a high-entropy alloy catalyst with reverse electron transfer for Li-O2 batteries. ACS. Nano. 2025, 19, 17589-605.
92. Zhu, X.; Huang, W.; Lou, Y.; et al. Ultrafast joule-heating synthesis of FeCoMnCuAl high-entropy-alloy nanoparticles as efficient OER electrocatalysts. Prog. Nat. Sci.:. Mater. Int. 2024, 34, 880-7.
93. Hassanzadeh-Tabrizi, S. Precise calculation of crystallite size of nanomaterials: a review. J. Alloys. Compd. 2023, 968, 171914.
94. Shah, S. S.; Niaz, F.; Ehsan, M. A.; et al. Advanced strategies in electrode engineering and nanomaterial modifications for supercapacitor performance enhancement: a comprehensive review. J. Energy. Storage. 2024, 79, 110152.
95. Abdelhamid, A. A.; Mendoza-Garcia, A.; Ying, J. Y. Advances in and prospects of nanomaterials’ morphological control for lithium rechargeable batteries. Nano. Energy. 2022, 93, 106860.
96. Chen, Y.; Li, Y.; Wang, Y.; et al. Rapid, in situ synthesis of high capacity battery anodes through high temperature radiation-based thermal shock. Nano. Lett. 2016, 16, 5553-8.
97. Lu, J.; Liu, S.; Liu, J.; et al. Millisecond conversion of photovoltaic silicon waste to binder-free high silicon content nanowires electrodes. Adv. Energy. Mater. 2021, 11, 2102103.
98. Shen, L.; Sun, K.; Xi, F.; et al. Conversion of photovoltaic waste silicon into amorphous silicon nanowire anodes. Energy. Environ. Sci. 2025, 18, 4348-61.
99. Dou, S.; Xu, J.; Zhang, D.; et al. Ultrarapid nanomanufacturing of high-quality bimetallic anode library toward stable potassium-ion storage. Angew. Chem. Int. Ed. Engl. 2023, 62, e202303600.
100. Zong, L.; Lu, F.; Li, P.; et al. Thermal shock synthesis for loading sub‐2 nm Ru nanoclusters on titanium nitride as a remarkable electrocatalyst toward hydrogen evolution reaction. Adv. Mater. 2024, 36, 2403525.
101. Fang, R.; Yang, J.; Song, W. S.; et al. High-temperature shock-induced transformation of bulk copper into single-atom catalyst. Nano. Res. 2025, 18, 94907300.
102. Shi, W.; Li, Z.; Gong, Z.; et al. Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock. Nat. Commun. 2023, 14, 2294.
103. Cai, H.; Yang, H.; He, S.; et al. Size-adjustable high-entropy alloy nanoparticles as an efficient platform for electrocatalysis. Angew. Chem. Int. Ed. Engl. 2025, 64, e202423765.
104. Zhang, Y.; Lin, Y.; Duan, T.; Song, L. Interfacial engineering of heterogeneous catalysts for electrocatalysis. Mater. Today. 2021, 48, 115-34.
105. Chen, B.; Sui, S.; He, F.; et al. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications. Chem. Soc. Rev. 2023, 52, 7802-47.
106. Du, Y.; Li, B.; Xu, G.; Wang, L. Recent advances in interface engineering strategy for highly‐efficient electrocatalytic water splitting. InfoMat. 2022, 5, e12377.
107. Chen, C.; Jiang, M.; Zhou, T.; et al. Interface aspects in all-solid-state Li-based batteries reviewed. Adv. Energy. Mater. 2021, 11, 2003939.
108. Wan, H.; Wang, Z.; Zhang, W.; He, X.; Wang, C. Interface design for all-solid-state lithium batteries. Nature. 2023, 623, 739-44.
109. Zahiri, B.; Patra, A.; Kiggins, C.; et al. Revealing the role of the cathode-electrolyte interface on solid-state batteries. Nat. Mater. 2021, 20, 1392-1400.
110. Kong, X.; Gu, R.; Jin, Z.; et al. Maximizing interface stability in all-solid-state lithium batteries through entropy stabilization and fast kinetics. Nat. Commun. 2024, 15, 7247.
111. Yao, X.; Chen, S.; Wang, C.; et al. Interface welding via thermal pulse sintering to enable 4.6 V solid-state batteries. Adv. Energy. Mater. 2023, 14, 2303422.
112. Cui, X.; Chen, X.; Lin, C.; et al. An integrated optimization strategy by Joule heating technique enabling rapid fabrication of robust Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte for all-solid-state lithium metal batteries. J. Colloid. Interface. Sci. 2025, 686, 660-671.
113. Chen, J.; Chen, W.; Deng, B.; Li, B.; Kittrell, C.; Tour, J. M. Cathode interface construction by rapid sintering in solid-state batteries. Small. 2023, 20, 2307342.
114. Tubtimkuna, S.; Danilov, D. L.; Sawangphruk, M.; Notten, P. H. L. Review of the scalable core-shell synthesis methods: the improvements of Li‐ion battery electrochemistry and cycling stability. Small. Methods. 2023, 7, 2300345.
115. Wang, F.; Zhang, W.; Wan, H.; et al. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. Chin. Chem. Lett. 2022, 33, 2259-69.
116. Yin, R.; Guo, Z.; Liu, R.; Tao, X. S. Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chin. Chem. Lett. 2025, 36, 109643.
117. Li, Z.; Huang, P.; Zhang, J.; et al. Ultra-uniform interfacial matrix via high-temperature thermal shock for long-cycle stability cathodes of sodium-ion batteries. Energy. Environ. Sci. 2025, 18, 2962-72.
118. He, W.; Cai, J.; Li, Y.; Wang, Z.; Li, Y.; Yan, X. Transforming of rigid-flexible micro-sized silicon anodes: carbothermal shock method yields durable, high-capacity electrodes. ChemistrySelect. 2025, 10, e202501453.
119. Shi, W.; Liu, H.; Zhang, J.; et al. Roll-to-roll synthesis of multielement heterostructured catalysts. Nat. Synth. 2025, 4, 836-847.
120. Zeng, K.; Zhang, J.; Gao, W.; et al. Surface-decorated high-entropy alloy catalysts with significantly boosted activity and stability. Adv. Funct. Mater. 2022, 32, 2204643.


