1. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev 2014;114:11636-82.
2. Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 2018;3:18013.
3. Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater 2018;8:1703137.
4. Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev 2017;46:3529-614.
5. Chayambuka K, Mulder G, Danilov DL, Notten PHL. Sodium-ion battery materials and electrochemical properties reviewed. Adv Energy Mater 2018;8:1800079.
6. Fang C, Huang Y, Zhang W, et al. Routes to high energy cathodes of sodium-ion batteries. Adv Energy Mater 2016;6:1501727.
7. Xiao J, Li X, Tang K, et al. Recent progress of emerging cathode materials for sodium ion batteries. Mater Chem Front 2021;5:3735-64.
8. Xiang X, Zhang K, Chen J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv Mater 2015;27:5343-64.
9. Bommier C, Ji X. Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes. Small 2018;14:e1703576.
10. Song J, Xiao B, Lin Y, Xu K, Li X. Interphases in sodium-ion batteries. Adv Energy Mater 2018;8:1703082.
11. Ponrouch A, Monti D, Boschin A, Steen B, Johansson P, Palacín MR. Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A 2015;3:22-42.
12. Lao M, Zhang Y, Luo W, Yan Q, Sun W, Dou SX. Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater 2017;29:1700622.
13. Yu P, Tang W, Wu F, et al. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met 2020;39:1019-33.
14. Chang G, Zhao Y, Dong L, et al. A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. J Mater Chem A 2020;8:4996-5048.
15. Goodenough JB. Evolution of strategies for modern rechargeable batteries. Acc Chem Res 2013;46:1053-61.
16. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114:11503-618.
17. Jin Y, Xu Y, Le PML, et al. Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases. ACS Energy Lett 2020;5:3212-20.
18. Mu L, Feng X, Kou R, et al. Deciphering the cathode-electrolyte interfacial chemistry in sodium layered cathode materials. Adv Energy Mater 2018;8:1801975.
19. Han B, Zou Y, Zhang Z, et al. Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nat Commun 2021;12:3066.
20. Park J, Ku K, Son SB, et al. Effect of electrolytes on the cathode-electrolyte interfacial stability of Fe-based layered cathodes for sodium-ion batteries. J Electrochem Soc 2022;169:030536.
21. Moeez I, Susanto D, Chang W, Lim HD, Chung KY. Artificial cathode electrolyte interphase by functional additives toward long-life sodium-ion batteries. Chem Eng J 2021;425:130547.
22. Bodenes L, Darwiche A, Monconduit L, Martinez H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J Power Sources 2015;273:14-24.
23. Zhang X, Qiao Y, Guo S, et al. Manganese-based Na-rich materials boost anionic redox in high-performance layered cathodes for sodium-ion batteries. Adv Mater 2019;31:e1807770.
24. Fondard J, Irisarri E, Courrèges C, Palacin MR, Ponrouch A, Dedryvère R. SEI composition on hard carbon in Na-ion batteries after long cycling: influence of salts (NaPF6, NaTFSI) and additives (FEC, DMCF). J Electrochem Soc 2020;167:070526.
25. Ghigna P, Quartarone E. Operando x-ray absorption spectroscopy on battery materials: a review of recent developments. J Phys Energy 2021;3:032006.
26. Chen M, Chou SL, Dou SX. Understanding challenges of cathode materials for sodium-ion batteries using synchrotron-based X-ray absorption spectroscopy. Batteries Supercaps 2019;2:842-51.
27. Wang PF, Xiao Y, Piao N, et al. Both cationic and anionic redox chemistry in a P2-type sodium layered oxide. Nano Energy 2020;69:104474.
28. Huang J, Guo X, Du X, et al. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ Sci 2019;12:1550-7.
29. Hirsh HS, Sayahpour B, Shen A, et al. Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life. Energy Storage Mater 2021;42:78-87.
30. Song H, Su J, Wang C. Multi-ions electrolyte enabled high performance voltage tailorable room-temperature Ca-metal batteries. Adv Energy Mater 2021;11:2003685.
31. Jin Y, Xu Y, Le PML, et al. Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases. ACS Energy Lett 2020;5:3212-20.
32. Andre D, Meiler M, Steiner K, Wimmer C, Soczka-Guth T, Sauer DU. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. J Power Sources 2011;196:5334-41.
33. Walther F, Koerver R, Fuchs T, et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem Mater 2019;31:3745-55.
34. Schwieters T, Evertz M, Mense M, Winter M, Nowak S. Lithium loss in the solid electrolyte interphase: lithium quantification of aged lithium ion battery graphite electrodes by means of laser ablation inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectroscopy. J Power Sources 2017;356:47-55.
35. Kim H, Kim H, Ding Z, et al. Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater 2016;6:1600943.
36. Dou X, Hasa I, Saurel D, et al. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater Today 2019;23:87-104.
37. Zhao LF, Hu Z, Lai WH, et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv Energy Mater 2021;11:2002704.
38. Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 2011;21:3859-67.
39. Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl Mater Interfaces 2011;3:4165-8.
40. Dahbi M, Nakano T, Yabuuchi N, et al. Effect of hexafluorophosphate and fluoroethylene carbonate on electrochemical performance and the surface layer of hard carbon for sodium-ion batteries. ChemElectroChem 2016;3:1856-67.
41. Tang K, Fu L, White RJ, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2012;2:873-7.
42. Luo W, Schardt J, Bommier C, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J Mater Chem A 2013;1:10662-6.
43. Zhou X, Guo Y. Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries. ChemElectroChem 2014;1:83-6.
44. Xie H, Wu Z, Wang Z, et al. Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries. J Mater Chem A 2020;8:3606-12.
45. Bommier C, Luo W, Gao WY, Greaney A, Ma S, Ji X. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon 2014;76:165-74.
46. Ponrouch A, Goñi AR, Palacín MR. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 2013;27:85-8.
47. Zhu YE, Gu H, Chen YN, Yang D, Wei J, Zhou Z. Hard carbon derived from corn straw piths as anode materials for sodium ion batteries. Ionics 2018;24:1075-81.
48. Jin J, Yu BJ, Shi ZQ, Wang CY, Chong CB. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J Power Sources 2014;272:800-7.
49. Yang T, Qian T, Wang M, et al. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater 2016;28:539-45.
50. Cao Y, Xiao L, Sushko ML, et al. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 2012;12:3783-7.
51. Lotfabad EM, Ding J, Cui K, et al. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014;8:7115-29.
52. Jiang X, Liu X, Zeng Z, et al. A bifunctional fluorophosphate electrolyte for safer sodium-ion batteries. iScience 2018;10:114-22.
53. Li Y, Xu S, Wu X, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A 2015;3:71-7.
54. Li W, Zeng L, Yang Z, et al. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale 2014;6:693-8.
55. Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013;7:11004-15.
56. Liu X, Jiang X, Zeng Z, et al. High capacity and cycle-stable hard carbon anode for nonflammable sodium-ion batteries. ACS Appl Mater Interfaces 2018;10:38141-50.
57. Li Y, Hu YS, Titirici MM, Chen L, Huang X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 2016;6:1600659.
58. Li Y, Lu Y, Meng Q, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv Energy Mater 2019;9:1902852.
59. Zhang Q, Wang Z, Li X, et al. Comparative study of 1,3-propane sultone, prop-1-ene-1,3-sultone and ethylene sulfate as film-forming additives for sodium ion batteries. J Power Sources 2022;541:231726.
60. Shao Y, Xiao J, Wang W, et al. Surface-driven sodium ion energy storage in nanocellular carbon foams. Nano Lett 2013;13:3909-14.
61. Feng J, An Y, Ci L, Xiong S. Nonflammable electrolyte for safer non-aqueous sodium batteries. J Mater Chem A 2015;3:14539-44.
62. Luo W, Bommier C, Jian Z, et al. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl Mater Interfaces 2015;7:2626-31.
63. Kim DH, Kang B, Lee H. Comparative study of fluoroethylene carbonate and succinic anhydride as electrolyte additive for hard carbon anodes of Na-ion batteries. J Power Sources 2019;423:137-43.
64. Bai P, Han X, He Y, et al. Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries. Energy Stor Mater 2020;25:324-33.
65. Che H, Liu J, Wang H, et al. Rubidium and cesium ions as electrolyte additive for improving performance of hard carbon anode in sodium-ion battery. Electrochem Commun 2017;83:20-3.
66. Wang J, Yamada Y, Sodeyama K, et al. Fire-extinguishing organic electrolytes for safe batteries. Nat Energy 2018;3:22-9.
67. Zhang J, Wang DW, Lv W, et al. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci 2017;10:370-6.
68. Cometto C, Yan G, Mariyappan S, Tarascon JM. Means of using cyclic voltammetry to rapidly design a stable DMC-based electrolyte for Na-ion batteries. J Electrochem Soc 2019;166:A3723-30.
69. Yan G, Reeves K, Foix D, et al. A new electrolyte formulation for securing high temperature cycling and storage performances of Na-ion batteries. Adv Energy Mater 2019;9:1901431.
70. Che H, Yang X, Wang H, et al. Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives. J Power Sources 2018;407:173-9.
71. Dugas R, Ponrouch A, Gachot G, David R, Palacin MR, Tarascon JM. Na reactivity toward carbonate-based electrolytes: the effect of FEC as additive. J Electrochem Soc 2016;163:A2333-9.
72. Liu Q, Mu D, Wu B, Wang L, Gai L, Wu F. Density functional theory research into the reduction mechanism for the solvent/additive in a sodium-ion battery. ChemSusChem 2017;10:786-96.
73. Wang E, Niu Y, Yin YX, Guo YG. Manipulating electrode/electrolyte interphases of sodium-ion batteries: strategies and perspectives. ACS Materials Lett 2021;3:18-41.
74. Hu S, Zhao H, Qian Y, et al. Improved high-temperature performance of LiNi0.5Co0.2Mn0.3O2/artificial graphite lithium ion pouch cells by difluoroethylene carbonate. J Energy Storage 2023;57:106266.
75. Ma L, Glazier SL, Petibon R, et al. A guide to ethylene carbonate-free electrolyte making for Li-ion cells. J Electrochem Soc 2017;164:A5008-18.
76. Yu Z, Yu W, Chen Y, et al. Tuning fluorination of linear carbonate for lithium-ion batteries. J Electrochem Soc 2022;169:040555.
77. Lee H, Choi S, Choi S, et al. SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5V Li-ion batteries. Electrochem Commun 2007;9:801-6.
78. Leggesse EG, Jiang JC. Theoretical study of the reductive decomposition of 1,3-propane sultone: SEI forming additive in lithium-ion batteries. RSC Adv 2012;2:5439-46.
79. Liu Q, Xu R, Mu D, et al. Progress in electrolyte and interface of hard carbon and graphite anode for sodium-ion battery. Carbon Energy 2022;4:458-79.
80. Xia L, Xia Y, Liu Z. A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries. J Power Sources 2015;278:190-6.
81. Ji W, Huang H, Zhang X, et al. A redox-active organic salt for safer Na-ion batteries. Nano Energy 2020;72:104705.
82. Zheng X, Fu H, Hu C, et al. Toward a stable sodium metal anode in carbonate electrolyte: a compact, inorganic alloy interface. J Phys Chem Lett 2019;10:707-14.
83. Wang H, Wang C, Matios E, Li W. Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew Chem 2018;130:7860-3.
84. Fang W, Jiang H, Zheng Y, et al. A bilayer interface formed in high concentration electrolyte with SbF3 additive for long-cycle and high-rate sodium metal battery. J Power Sources 2020;455:227956.
85. Wang S, Cai W, Sun Z, et al. Stable cycling of Na metal anodes in a carbonate electrolyte. Chem Commun 2019;55:14375-8.
86. Jiang Z, Zeng Z, Yang C, et al. Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode. Nano Lett 2019;19:8780-6.
87. Li P, Jiang Z, Huang X, Lu X, Xie J, Cheng S. Nitrofullerene as an electrolyte-compatible additive for high-performance sodium metal batteries. Nano Energy 2021;89:106396.
88. Li P, Huang X, Jiang Z, et al. High-rate sodium metal batteries enabled by trifluormethylfullerene additive. Nano Res 2022;15:7172-9.
89. Jiang R, Hong L, Liu Y, et al. An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery. Energy Stor Mater 2021;42:370-9.
90. Kreissl JJA, Langsdorf D, Tkachenko BA, Schreiner PR, Janek J, Schröder D. Incorporating diamondoids as electrolyte additive in the sodium metal anode to mitigate dendrite growth. ChemSusChem 2020;13:2661-70.
91. Zhu M, Wang G, Liu X, et al. Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-rich protection layer. Angew Chem 2020;132:6658-62.
92. Zhu M, Zhang Y, Yu F, et al. Stable sodium metal anode enabled by an interface protection layer rich in organic sulfide salt. Nano Lett 2021;21:619-27.
93. Zhu M, Li L, Zhang Y, et al. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Materials 2021;42:145-53.
94. Rodriguez R, Loeffler KE, Nathan SS, et al. In situ optical imaging of sodium electrodeposition: effects of fluoroethylene carbonate. ACS Energy Lett 2017;2:2051-7.
95. Shiraz MHA, Zhao P, Liu J. High-performance sodium-selenium batteries enabled by microporous carbon/selenium cathode and fluoroethylene carbonate electrolyte additive. J Power Sources 2020;453:227855.
96. Han M, Zhu C, Ma T, Pan Z, Tao Z, Chen J. In situ atomic force microscopy study of nano-micro sodium deposition in ester-based electrolytes. Chem Commun 2018;54:2381-4.
97. Wang Q, Zhao C, Lv X, et al. Stabilizing a sodium-metal battery with the synergy effects of a sodiophilic matrix and fluorine-rich interface. J Mater Chem A 2019;7:24857-67.
98. Pan K, Lu H, Zhong F, Ai X, Yang H, Cao Y. Understanding the electrochemical compatibility and reaction mechanism on Na metal and hard carbon anodes of PC-based electrolytes for sodium-ion batteries. ACS Appl Mater Interfaces 2018;10:39651-60.
99. Fan JJ, Dai P, Shi CG, et al. Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries. Adv Funct Mater 2021;31:2010500.
100. Feng J, Ci L, Xiong S. Biphenyl as overcharge protection additive for nonaqueous sodium batteries. RSC Adv 2015;5:96649-52.
101. Baggetto L, Marszewski M, Górka J, Jaroniec M, Veith GM. AlSb thin films as negative electrodes for Li-ion and Na-ion batteries. J Power Sources 2013;243:699-705.
102. Baggetto L, Keum JK, Browning JF, Veith GM. Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun 2013;34:41-4.
103. Baggetto L, Allcorn E, Unocic RR, Manthiram A, Veith GM. Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries. J Mater Chem A 2013;1:11163-9.
104. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc 2012;134:20805-11.
105. Ma W, Yin K, Gao H, Niu J, Peng Z, Zhang Z. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy 2018;54:349-59.
106. Kim IT, Kim SO, Manthiram A. Effect of TiC addition on SnSb-C composite anodes for sodium-ion batteries. J Power Sources 2014;269:848-54.
107. Kim IT, Allcorn E, Manthiram A. High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries. Phys Chem Chem Phys 2014;16:12884-9.
108. Kim IT, Allcorn E, Manthiram A. Cu6Sn5-TiC-C nanocomposite anodes for high-performance sodium-ion batteries. J Power Sources 2015;281:11-7.
109. Sadan MK, Choi SH, Kim HH, et al. Effect of sodium salts on the cycling performance of tin anode in sodium ion batteries. Ionics 2018;24:753-61.
110. Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 2012;48:7070-2.
111. Ji L, Gu M, Shao Y, et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv Mater 2014;26:2901-8.
112. Zhang J, Zhang K, Yang J, et al. Engineering solid electrolyte interphase on red phosphorus for long-term and high-capacity sodium storage. Chem Mater 2020;32:448-58.
113. Yabuuchi N, Matsuura Y, Ishikawa T, et al. Phosphorus electrodes in sodium cells: small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem 2014;1:580-9.
114. Dahbi M, Yabuuchi N, Fukunishi M, et al. Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface. Chem Mater 2016;28:1625-35.
115. Li M, Muralidharan N, Moyer K, Pint CL. Solvent mediated hybrid 2D materials: black phosphorus - graphene heterostructured building blocks assembled for sodium ion batteries. Nanoscale 2018;10:10443-9.
116. Song J, Wu M, Fang K, Tian T, Wang R, Tang H. NaF-rich interphase and high initial coulombic efficiency of red phosphorus anode for sodium-ion batteries by chemical presodiation. J Colloid Interface Sci 2023;630:443-52.
117. Capone I, Hurlbutt K, Naylor AJ, Xiao AW, Pasta M. Effect of the particle-size distribution on the electrochemical performance of a red phosphorus-carbon composite anode for sodium-ion batteries. Energy Fuels 2019;33:4651-8.
118. Jian Z, Zhao B, Liu P, et al. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem Commun 2014;50:1215-7.
119. Hu Z, Wang L, Zhang K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed Engl 2014;53:12794-8.
120. Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett 2011;2:2560-5.
121. Dynarowska M, Kotwiński J, Leszczynska M, Marzantowicz M, Krok F. Ionic conductivity and structural properties of Na2Ti3O7 anode material. Solid State Ionics 2017;301:35-42.
122. Zhao L, Zhao J, Hu YS, et al. Disodium Terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater 2012;2:962-5.
123. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 2009;8:621-9.
124. López-herraiz M, Castillo-martínez E, Carretero-gonzález J, Carrasco J, Rojo T, Armand M. Oligomeric-schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers. Energy Environ Sci 2015;8:3233-41.
125. Castillo-Martínez E, Carretero-González J, Armand M. Polymeric schiff bases as low-voltage redox centers for sodium-ion batteries. Angew Chem Int Ed Engl 2014;53:5341-5.
126. Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv Mater 2019;31:e1808393.
127. Kucinskis G, Nesterova I, Sarakovskis A, Bikse L, Hodakovska J, Bajars G. Electrochemical performance of Na2FeP2O7/C cathode for sodium-ion batteries in electrolyte with fluoroethylene carbonate additive. J Alloys Compd 2022;895:162656.
128. Lee Y, Lee J, Kim H, Kang K, Choi NS. Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries. J Power Sources 2016;320:49-58.
129. Cheng Z, Mao Y, Dong Q, et al. Fluoroethylene carbonate as an additive for sodium-ion batteries: effect on the sodium cathode. Acta Phys-Chim Sin 2019;35:868-75.
130. Wu S, Su B, Kun N, et al. Fluorinated carbonate electrolyte with superior oxidative stability enables long-term cycle stability of Na2/3Ni1/3Mn2/3O2 cathodes in sodium-ion batteries. Adv Energy Mater 2020;11:2002737.
131. Shi J, Ding L, Wan Y, et al. Achieving long-cycling sodium-ion full cells in ether-based electrolyte with vinylene carbonate additive. J Energy Chem 2021;57:650-5.
132. Yang Z, He J, Lai WH, et al. Fire-retardant, stable-cycling and high-safety sodium ion battery. Angew Chem 2021;133:27292-300.
133. Law M, Ramar V, Balaya P. Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery. J Power Sources 2017;359:277-84.
134. Farhat D, Maibach J, Eriksson H, Edström K, Lemordant D, Ghamouss F. Towards high-voltage Li-ion batteries: reversible cycling of graphite anodes and Li-ion batteries in adiponitrile-based electrolytes. Electrochimica Acta 2018;281:299-311.
135. Song X, Meng T, Deng Y, et al. The effects of the functional electrolyte additive on the cathode material Na0.76Ni0.3Fe0.4Mn0.3O2 for sodium-ion batteries. Electrochimica Acta 2018;281:370-7.
136. Tong B, Song Z, Wan H, et al. Sulfur-containing compounds as electrolyte additives for lithium-ion batteries. InfoMat 2021;3:1364-92.
137. Xie D, Zhang M, Wu Y, Xiang L, Tang Y. A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Funct Mater 2020;30:1906770.
138. Welch J, Mogensen R, van Ekeren W, Eriksson H, Naylor AJ, Younesi R. Optimization of sodium bis(oxalato)borate (NaBOB) in triethyl phosphate (TEP) by electrolyte additives. J Electrochem Soc 2022;169:120523.
139. Nimkar A, Shpigel N, Malchik F, et al. Unraveling the role of fluorinated alkyl carbonate additives in improving cathode performance in sodium-ion batteries. ACS Appl Mater Interfaces 2021;13:46478-87.
140. Zuo W, Qiu J, Liu X, et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nat Commun 2020;11:3544.
141. Chen L, Kishore B, Song T, Walker M, Dancer C, Kendrick E. Improved lifetime of Na-ion batteries with a water-scavenging electrolyte additive. Front Energy Res 2022;10:925430.
142. Yu Y, Che H, Yang X, Deng Y, Li L, Ma ZF. Non-flammable organic electrolyte for sodium-ion batteries. Electrochem Commun 2020;110:106635.
143. Hueso KB, Armand M, Rojo T. High temperature sodium batteries: status, challenges and future trends. Energy Environ Sci 2013;6:734-49.
144. Feng J, Zhang Z, Li L, Yang J, Xiong S, Qian Y. Ether-based nonflammable electrolyte for room temperature sodium battery. J Power Sources 2015;284:222-6.
145. Zeng G, Liu Y, Gu C, et al. A nonflammable fluorinated carbonate electrolyte for sodium-ion batteries. Acta Phys-Chim Sin 2020;36:1905006-0.
146. Jia H, Yang Z, Xu Y, et al. Is nonflammability of electrolyte overrated in the overall safety performance of lithium ion batteries? Advanced Energy Materials 2023;13:2203144.
147. Ma L, Xia J, Dahn JR. Ternary electrolyte additive mixtures for Li-ion cells that promote long lifetime and less reactivity with charged electrodes at elevated temperatures. J Electrochem Soc 2015;162:A1170-4.
148. Ma L, Xia J, Xia X, Dahn JR. The impact of vinylene carbonate, fluoroethylene carbonate and vinyl ethylene carbonate electrolyte additives on electrode/electrolyte reactivity studied using accelerating rate calorimetry. J Electrochem Soc 2014;161:A1495-8.
149. Xiong DJ, Petibon R, Nie M, Ma L, Xia J, Dahn JR. Interactions between positive and negative electrodes in Li-ion cells operated at high temperature and high voltage. J Electrochem Soc 2016;163:A546-51.
150. Petibon R, Rotermund L, Nelson KJ, Gozdz AS, Xia J, Dahn JR. Study of electrolyte components in Li ion cells using liquid-liquid extraction and gas chromatography coupled with mass spectrometry. J Electrochem Soc 2014;161:A1167-72.
151. Petibon R, Chevrier VL, Aiken CP, et al. Studies of the capacity fade mechanisms of LiCoO2/Si-alloy: graphite cells. J Electrochem Soc 2016;163:A1146-56.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.