REFERENCES
1. Asadi M, Sayahpour B, Abbasi P, et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 2018;555:502-6.
2. Gourdin G, Xiao N, McCulloch W, Wu Y. Use of polarization curves and impedance analyses to optimize the “triple-phase boundary” in K-O2 batteries. ACS Appl Mater Interfaces 2019;11:2925-34.
3. Liu Y, Zhan F, Wang B, et al. Three-dimensional composite catalysts for Al-O2 batteries composed of CoMn2O4 Nanoneedles supported on nitrogen-doped carbon nanotubes/graphene. ACS Appl Mater Interfaces 2019;11:21526-35.
4. Vardar G, Nelson EG, Smith JG, et al. Identifying the discharge product and reaction pathway for a secondary Mg/O2 battery. Chem Mater 2015;27:7564-8.
5. Li B, Zhang S, Wang B, Xia Z, Tang C, Zhang Q. A porphyrin covalent organic framework cathode for flexible Zn-air batteries. Energy Environ Sci 2018;11:1723-9.
6. Qin L, Schkeryantz L, Zheng J, Xiao N, Wu Y. Superoxide-based K-O2 batteries: highly reversible oxygen redox solves challenges in air electrodes. J Am Chem Soc 2020;142:11629-40.
7. Xia C, Black R, Fernandes R, Adams B, Nazar LF. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat Chem 2015;7:496-501.
8. Ryu WH, Gittleson FS, Thomsen JM, et al. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nat Commun 2016;7:12925.
9. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater 2011;11:19-29.
10. Thotiyl MM, Freunberger SA, Peng Z, Chen Y, Liu Z, Bruce PG. A stable cathode for the aprotic Li-O2 battery. Nat Mater 2013;12:1050-6.
11. Meng F, Zhong H, Bao D, Yan J, Zhang X. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-Air batteries. J Am Chem Soc 2016;138:10226-31.
12. Cai X, Lai L, Lin J, Shen Z. Recent advances in air electrodes for Zn-air batteries: electrocatalysis and structural design. Mater Horiz 2017;4:945-76.
13. Xu N, Qiao J. Recent progress in bifunctional catalysts for zinc-air batteries. J Electrochem 2020;26:531-562.
14. Lu Z. Computational discovery of energy materials in the era of big data and machine learning: a critical review. Materials Reports: Energy 2021;1:100047.
15. Li C, Guo Z, Yang B, Liu Y, Wang Y, Xia Y. A rechargeable Li-CO2 battery with a gel polymer electrolyte. Angew Chem Int Ed Engl 2017;56:9126-30.
16. Qiao Y, Yi J, Wu S, et al. Li-CO2 Electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 2017;1:359-70.
17. Wang T, Sang X, Zheng W, et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Adv Mater 2020;32:e2002430.
18. Wang K, Wu Y, Cao X, Gu L, Hu J. A Zn-CO2 flow battery generating electricity and methane. Adv Funct Mater 2019;30:1908965.
19. Liu B, Sun Y, Liu L, Xu S, Yan X. Advances in manganese-based oxides cathodic electrocatalysts for Li-air batteries. Adv Funct Mater 2018;28:1704973.
20. Wang R, Chen Z, Hu N, Xu C, Shen Z, Liu J. Nanocarbon-based electrocatalysts for rechargeable aqueous Li/Zn-Air batteries. ChemElectroChem 2018;5:1745-63.
21. Ma Z, Yuan X, Li L, et al. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ Sci 2015;8:2144-98.
22. Wang Y, Lu Y. Nonaqueous lithium-oxygen batteries: reaction mechanism and critical open questions. Energy Storage Materials 2020;28:235-46.
23. Ma L, Yu T, Tzoganakis E, et al. Fundamental understanding and material challenges in rechargeable nonaqueous Li-O2 batteries: recent progress and perspective. Adv Energy Mater 2018;8:1800348.
24. Balaish M, Jung J, Kim I, Ein-eli Y. A critical review on functionalization of air-cathodes for nonaqueous Li-O2 batteries. Adv Funct Mater 2020;30:1808303.
25. Black R, Adams B, Nazar LF. Non-aqueous and hybrid Li-O2 batteries. Adv Energy Mater 2012;2:801-15.
26. Wang G, Tu F, Xie J, et al. High-performance Li-O2 batteries with controlled Li2O2 growth in graphene/Au-nanoparticles/Au-nanosheets sandwich. Adv Sci (Weinh) 2016;3:1500339.
27. Zhao C, Yu C, Banis MN, et al. Decoupling atomic-layer-deposition ultrafine RuO2 for high-efficiency and ultralong-life Li-O2 batteries. Nano Energy 2017;34:399-407.
28. Song S, Xu W, Zheng J, et al. Complete Decomposition of Li2CO3 in Li-O2 batteries using Ir/B4C as noncarbon-based oxygen electrode. Nano Lett 2017;17:1417-24.
29. Zhang P, Zhang S, He M, et al. Realizing the embedded growth of large Li2O2 aggregations by matching different metal oxides for high-capacity and high-rate lithium oxygen batteries. Adv Sci (Weinh) 2017;4:1700172.
30. Zhao W, Li X, Yin R, et al. Urchin-like NiO-NiCo2O4 heterostructure microsphere catalysts for enhanced rechargeable non-aqueous Li-O2 batteries. Nanoscale 2018;11:50-9.
31. Liang R, Hu A, Li M, Ran Z, Shu C, Long J. Defect regulation of heterogeneous nickel-based oxides via interfacial engineering for long-life lithium-oxygen batteries. Electrochimica Acta 2019;321:134716.
32. Xu N, Zhang Y, Wang M, et al. High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane. Nano Energy 2019;65:104021.
33. Xia Q, Zhao L, Zhang Z, et al. MnCo2S4-CoS1.097 Heterostructure nanotubes as high efficiency cathode catalysts for stable and long-life lithium-oxygen batteries under high current conditions. Adv Sci (Weinh) 2021;8:e2103302.
34. Xia Q, Zhao L, Li D, et al. Phase modulation of 1T/2HMoSe2 nanoflowers for highly efficient bifunctional electrocatalysis in rechargeable Li-O2 batteries. J Mater Chem A 2021;9:19922-31.
35. Hu A, Lv W, Lei T, et al. Heterostructured NiS2/ZnIn2S4 realizing toroid-like Li2O2 deposition in lithium-oxygen batteries with low-donor-number solvents. ACS Nano 2020;14:3490-9.
36. Dong S, Chen X, Zhang K, et al. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries. Chem Commun (Camb) 2011;47:11291-3.
37. Idrees M, Batool S, Kong J, et al. Polyborosilazane derived ceramics - nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochimica Acta 2019;296:925-37.
38. Lee G, Sung M, Kim J, Song HJ, Kim D. Synergistic effect of CuGeO3/graphene composites for efficient oxygen-electrode electrocatalysts in Li-O2 batteries. Adv Energy Mater 2018;8:1801930.
39. Tan G, Chong L, Amine R, et al. Toward highly efficient electrocatalyst for Li-O2 batteries using biphasic N-doping cobalt@graphene multiple-capsule heterostructures. Nano Lett 2017;17:2959-66.
40. Xu JJ, Wang ZL, Xu D, Zhang LL, Zhang XB. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat Commun 2013;4:2438.
41. Mou S, Wu T, Xie J, et al. Boron phosphide nanoparticles: a nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv Mater 2019;31:e1903499.
42. Beck A, Huang X, Artiglia L, et al. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction. Nat Commun 2020;11:3220.
43. Kwon O, Sengodan S, Kim K, et al. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat Commun 2017;8:15967.
44. Higaki T, Li Y, Zhao S, et al. Atomically tailored gold nanoclusters for catalytic application. Angew Chem Int Ed Engl 2019;58:8291-302.
45. Rong W, Zou H, Zang W, et al. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction. Angew Chem Int Ed Engl 2021;60:466-72.
46. Zhao J, Jin R. Heterogeneous catalysis by gold and gold-based bimetal nanoclusters. Nano Today 2018;18:86-102.
47. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011;3:634-41.
48. Peng Y, Lu B, Chen S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv Mater 2018;30:e1801995.
49. Li S, Hao X, Abudula A, Guan G. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. J Mater Chem A 2019;7:18674-707.
50. Sun T, Xu L, Wang D, Li Y. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res 2019;12:2067-80.
51. Zhu C, Shi Q, Xu BZ, et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv Energy Mater 2018;8:1801956.
52. Wang Y, Li Q, Zhang L, et al. A gel-limiting strategy for large-scale fabrication of Fe-N-C single-atom ORR catalysts. J Mater Chem A 2021;9:7137-42.
53. Liu F, Yan N, Zhu G, et al. Fe-N-C single-atom catalysts with an axial structure prepared by a new design and synthesis method for ORR. New J Chem 2021;45:13004-14.
54. Tavakkoli M, Flahaut E, Peljo P, et al. Mesoporous single-atom-doped grapheme-carbon nanotube hybrid: synthesis and tunable electrocatalytic activity for oxygen evolution and reduction reactions. ACS Catal 2020;10:4647-58.
55. Deng Q, Zhao J, Wu T, Chen G, Hansen HA, Vegge T. 2D transition metal-TCNQ sheets as bifunctional single-atom catalysts for oxygen reduction and evolution reaction (ORR/OER). J Catal 2019;370:378-84.
56. Ying Y, Fan K, Luo X, Qiao J, Huang H. Unravelling the origin of bifunctional OER/ORR activity for single-atom catalysts supported on C2N by DFT and machine learning. J Mater Chem A 2021;9:16860-7.
57. Zhu C, Shi Q, Feng S, Du D, Lin Y. Single-atom catalysts for electrochemical water splitting. ACS Energy Lett 2018;3:1713-21.
58. Zeng L, Dai C, Liu B, Xue C. Oxygen-assisted stabilization of single-atom Au during photocatalytic hydrogen evolution. J Mater Chem A 2019;7:24217-21.
59. Zhang J, Xu X, Yang L, Cheng D, Cao D. Single-atom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction. Small Methods 2019;3:1900653.
60. Gao D, Liu T, Wang G, Bao X. Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett 2021;6:713-27.
61. Li M, Wang H, Luo W, Sherrell PC, Chen J, Yang J. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv Mater 2020;32:e2001848.
62. Cao S, Wei S, Wei X, et al. Can N, S cocoordination promote single atom catalyst performance in CO2RR? Small 2021;17:e2100949.
63. Dopilka A, Zhao R, Weller JM, Bobev S, Peng X, Chan CK. Experimental and computational study of the lithiation of Ba8AlyGe46-y based type I germanium clathrates. ACS Appl Mater Interfaces 2018;10:37981-93.
64. Lee YW, Kim DM, Kim SJ, et al. In situ synthesis and characterization of Ge embedded electrospun carbon nanostructures as high performance anode material for lithium-ion batteries. ACS Appl Mater Interfaces 2016;8:7022-9.
65. Ma W, Wang Y, Yang Y, et al. Temperature-dependent Li storage performance in nanoporous Cu-Ge-Al alloy. ACS Appl Mater Interfaces 2019;11:9073-82.
66. Yu J, Li B, Zhao C, Zhang Q. Seawater electrolyte-based metal-air batteries: from strategies to applications. Energy Environ Sci 2020;13:3253-68.
67. Sun Y, Liu X, Jiang Y, et al. Recent advances and challenges in divalent and multivalent metal electrodes for metal-air batteries. J Mater Chem A 2019;7:18183-208.
68. Liu Q, Chang Z, Li Z, Zhang X. Flexible metal-air batteries: progress, challenges, and perspectives. Small Methods 2018;2:1700231.
69. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 2017;117:7190-239.
70. Lyu Z, Zhou Y, Dai W, et al. Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries. Chem Soc Rev 2017;46:6046-72.
71. Li Y, Lu J. Metal-air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett 2017;2:1370-7.
72. Ma L, Chen S, Wang D, et al. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv Energy Mater 2019;9:1803046.
73. Zhang Y, Wu Y, You W, et al. Deeply rechargeable and hydrogen-evolution-suppressing zinc anode in alkaline aqueous electrolyte. Nano Lett 2020;20:4700-7.
74. Zhong C, Liu B, Ding J, et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat Energy 2020;5:440-9.
75. Lu J, Li L, Park JB, Sun YK, Wu F, Amine K. Aprotic and aqueous Li-O2 batteries. Chem Rev 2014;114:5611-40.
76. Pan J, Xu YY, Yang H, Dong Z, Liu H, Xia BY. Advanced architectures and relatives of air electrodes in zn-air batteries. Adv Sci (Weinh) 2018;5:1700691.
77. Lee J, Hwang B, Park M, Kim K. Improved reversibility of Zn anodes for rechargeable Zn-air batteries by using alkoxide and acetate ions. Electrochimica Acta 2016;199:164-71.
78. Zhang Y, Deng Y, Wang J, et al. Recent progress on flexible Zn-air batteries. Energy Storage Materials 2021;35:538-49.
79. Zhong Y, Xu X, Wang W, Shao Z. Recent advances in metal-organic framework derivatives as oxygen catalysts for zinc-air batteries. Batteries & Supercaps 2019;2:272-89.
80. Zhao Z, Fan X, Ding J, Hu W, Zhong C, Lu J. Challenges in zinc electrodes for alkaline zinc-air batteries: obstacles to commercialization. ACS Energy Lett 2019;4:2259-70.
81. Zelger C, Süßenbacher M, Laskos A, Gollas B. State of charge indicators for alkaline zinc-air redox flow batteries. Journal of Power Sources 2019;424:76-81.
82. Xie J, Wang Y. Recent development of CO2 electrochemistry from Li-CO2 batteries to Zn-CO2 batteries. Acc Chem Res 2019;52:1721-9.
83. Chen Y, Mei Y, Li M, et al. Highly selective CO2 conversion to methane or syngas tuned by CNTs@non-noble-metal cathodes in Zn-CO2 flow batteries. Green Chem 2021;23:8138-46.
84. Gao S, Jin M, Sun J, et al. Coralloid Au enables high-performance Zn-CO2 battery and self-driven CO production. J Mater Chem A 2021;9:21024-31.
85. Liu X, Tao S, Zhang J, Zhu Y, Ma R, Lu J. Ultrathin p-n type Cu2O/CuCoCr-layered double hydroxide heterojunction nanosheets for photo-assisted aqueous Zn-CO2 batteries. J Mater Chem A 2021;9:26061-8.
86. Xie J, Wang X, Lv J, et al. Reversible aqueous zinc-CO2 batteries based on CO2-HCOOH interconversion. Angew Chem Int Ed Engl 2018;57:16996-7001.
87. Kwak WJ, Rosy, Sharon D, et al. Lithium-oxygen batteries and related systems: potential, status, and future. Chem Rev 2020;120:6626-83.
88. Aurbach D, Mccloskey BD, Nazar LF, Bruce PG. Advances in understanding mechanisms underpinning lithium-air batteries. Nat Energy 2016:1.
89. Chang Z, Xu J, Liu Q, Li L, Zhang X. Recent progress on stability enhancement for cathode in rechargeable non-aqueous lithium-oxygen battery. Adv Energy Mater 2015;5:1500633.
90. Lyu Z, Yang L, Luan Y, et al. Effect of oxygen adsorbability on the control of Li2O2 growth in Li-O2 batteries: implications for cathode catalyst design. Nano Energy 2017;36:68-75.
91. Li F, Chen J. Mechanistic evolution of aprotic lithium-oxygen batteries. Adv Energy Mater 2017;7:1602934.
92. Takechi K, Shiga T, Asaoka T. A Li-O2/CO2 battery. Chem Commun (Camb) 2011;47:3463-5.
93. Hu A, Shu C, Xu C, et al. Design strategies toward catalytic materials and cathode structures for emerging Li-CO2 batteries. J Mater Chem A 2019;7:21605-33.
94. Mu X, Pan H, He P, Zhou H. Li-CO2 and Na-CO2 batteries: toward greener and sustainable electrical energy storage. Adv Mater 2020;32:e1903790.
95. Li X, Yang S, Feng N, He P, Zhou H. Progress in research on Li-CO2 batteries: mechanism, catalyst and performance. Chinese J Catal 2016;37:1016-24.
96. Jiao Y, Qin J, Sari HMK, Li D, Li X, Sun X. Recent progress and prospects of Li-CO2 batteries: mechanisms, catalysts and electrolytes. Energy Stor Mater 2021;34:148-70.
97. Mitchell S, Pérez-Ramírez J. Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat Commun 2020;11:4302.
98. Zhang L, Wang Y, Niu Z, Chen J. Single atoms on graphene for energy storage and conversion. Small Methods 2019;3:1800443.
99. Zhu C, Fu S, Shi Q, Du D, Lin Y. Single-atom electrocatalysts. Angew Chem Int Ed Engl 2017;56:13944-60.
100. Yang XF, Wang A, Qiao B, Li J, Liu J, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 2013;46:1740-8.
101. Ma L, Zhu G, Wang D, et al. Emerging metal single atoms in electrocatalysts and batteries. Adv Funct Mater 2020;30:2003870.
102. Zhang Z, Zhao X, Xi S, et al. Atomically dispersed cobalt trifunctional electrocatalysts with tailored coordination environment for flexible rechargeable Zn-air battery and self-driven water splitting. Adv Energy Mater 2020;10:2002896.
103. Sun H, Wang M, Zhang S, et al. Boosting oxygen dissociation over bimetal sites to facilitate oxygen reduction activity of zinc-air battery. Adv Funct Mater 2021;31:2006533.
104. Zhao L, Rong X, Niu Y, et al. Ostwald ripening tailoring hierarchically porous Na3V2(PO4)2O2F hollow nanospheres for superior high-rate and ultrastable sodium ion storage. Small 2020;16:e2004925.
105. Li L, Chang X, Lin X, Zhao ZJ, Gong J. Theoretical insights into single-atom catalysts. Chem Soc Rev 2020;49:8156-78.
106. Zheng Y, Jiao Y, Zhu Y, et al. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J Am Chem Soc 2017;139:3336-9.
107. Huang D, Luo Y, Li S, et al. Recent advances in tuning the electronic structures of atomically dispersed M-N-C materials for efficient gas-involving electrocatalysis. Mater Horiz 2020;7:970-86.
108. Hossain MD, Liu Z, Zhuang M, et al. Rational design of grapheme-supported single atom catalysts for hydrogen evolution reaction. Adv Energy Mater 2019;9:1803689.
109. Wang X, Chen Z, Zhao X, et al. Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew Chem Int Ed Engl 2018;57:1944-8.
110. Pan F, Zhang H, Liu K, et al. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal 2018;8:3116-22.
111. Yuan K, Sfaelou S, Qiu M, et al. Synergetic contribution of boron and Fe-Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett 2018;3:252-60.
112. Ren W, Tan X, Yang W, et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew Chem Int Ed Engl 2019;58:6972-6.
113. Osmieri L, Escudero-cid R, Monteverde Videla AH, Ocón P, Specchia S. Performance of a Fe-N-C catalyst for the oxygen reduction reaction in direct methanol fuel cell: cathode formulation optimization and short-term durability. Applied Catalysis B: Environmental 2017;201:253-65.
114. Fei H, Dong J, Feng Y, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat Catal 2018;1:63-72.
115. Du C, Gao Y, Wang J, Chen W. A new strategy for engineering a hierarchical porous carbon-anchored Fe single-atom electrocatalyst and the insights into its bifunctional catalysis for flexible rechargeable Zn-air batteries. J Mater Chem A 2020;8:9981-90.
116. Chen G, Liu P, Liao Z, et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv Mater 2020;32:e1907399.
117. Zeng Z, Yi L, He J, et al. Hierarchically porous carbon with pentagon defects as highly efficient catalyst for oxygen reduction and oxygen evolution reactions. J Mater Sci 2020;55:4780-91.
118. Ji D, Fan L, Li L, et al. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv Mater 2019;31:e1808267.
119. Han X, Ling X, Wang Y, et al. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew Chem Int Ed Engl 2019;58:5359-64.
120. Wu H, Li H, Zhao X, et al. Highly doped and exposed Cu(i)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ Sci 2016;9:3736-45.
121. Yang Y, Wang C, Gao S, et al. Incorporation of Cu-Nx cofactors into graphene encapsulated Co as biomimetic electrocatalysts for efficient oxygen reduction. Nanoscale 2018;10:21076-86.
122. Sun H, Liu S, Wang M, Qian T, Xiong J, Yan C. Updating the intrinsic activity of a single-atom site with a P-O bond for a rechargeable Zn-air battery. ACS Appl Mater Interfaces 2019;11:33054-61.
123. Chen Y, Ji S, Zhao S, et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat Commun 2018;9:5422.
124. Yang Y, Mao K, Gao S, et al. O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv Mater 2018;30:e1801732.
125. Han X, Ling X, Yu D, et al. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv Mater 2019;31:e1905622.
126. Zhu X, Zhang D, Chen C, et al. Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 2020;71:104597.
127. Gong S, Wang C, Jiang P, Hu L, Lei H, Chen Q. Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. J Mater Chem A 2018;6:13254-62.
128. Zheng W, Yang J, Chen H, et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv Funct Mater 2019;30:1907658.
129. Yang R, Xie J, Liu Q, et al. A trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables dual-model rechargeable Zn-CO2/Zn-O2 batteries. J Mater Chem A 2019;7:2575-80.
130. Wang P, Ren Y, Wang R, et al. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat Commun 2020;11:1576.
131. Shui JL, Karan NK, Balasubramanian M, Li SY, Liu DJ. Fe/N/C composite in Li-O2 battery: studies of catalytic structure and activity toward oxygen evolution reaction. J Am Chem Soc 2012;134:16654-61.
132. Song LN, Zhang W, Wang Y, et al. Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat Commun 2020;11:2191.
133. Hu X, Luo G, Zhao Q, et al. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J Am Chem Soc 2020;142:16776-86.
134. Zhao W, Wang J, Yin R, et al. Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li-O2 batteries. J Colloid Interface Sci 2020;564:28-36.
135. Hu C, Gong L, Xiao Y, et al. High-performance, long-life, rechargeable Li-CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms. Adv Mater 2020;32:e1907436.
136. Zhang B, Jiao Y, Chao D, et al. Targeted synergy between adjacent Co atoms on graphene oxide as an efficient new electrocatalyst for Li-CO2 batteries. Adv Funct Mater 2019;29:1904206.
137. Zang W, Sumboja A, Ma Y, et al. Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes. ACS Catal 2018;8:8961-9.
138. Yang ZK, Yuan C, Xu A. Confined pyrolysis within a nanochannel to form a highly efficient single iron site catalyst for Zn-air batteries. ACS Energy Lett 2018;3:2383-9.
139. Li BQ, Zhao CX, Chen S, et al. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries. Adv Mater 2019;31:e1900592.
140. Qiu HJ, Du P, Hu K, et al. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv Mater 2019;31:e1900843.
141. Tang C, Wang B, Wang HF, Zhang Q. Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries. Adv Mater 2017;29:1703185.
142. Wu J, Zhou H, Li Q, et al. Densely populated isolated single CoN site for efficient oxygen electrocatalysis. Adv Energy Mater 2019;9:1900149.
143. Pan Y, Liu S, Sun K, et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew Chem Int Ed Engl 2018;57:8614-8.
144. Wagh NK, Shinde SS, Lee CH, et al. Densely colonized isolated Cu-N single sites for efficient bifunctional electrocatalysts and rechargeable advanced Zn-air batteries. Appl Catal B: Environ 2020;268:118746.
145. Zhao J, Qin R, Liu R. Urea-bridging synthesis of nitrogen-doped carbon tube supported single metallic atoms as bifunctional oxygen electrocatalyst for zinc-air battery. Applied Catalysis B: Environmental 2019;256:117778.
146. Zhang J, Liu Y, Yu Z, et al. Boosting the performance of the Fe-N-C catalyst for the oxygen reduction reaction by introducing single-walled carbon nanohorns as branches on carbon fibers. J Mater Chem A 2019;7:23182-90.
147. Yang L, Shi L, Wang D, Lv Y, Cao D. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 2018;50:691-8.
148. Zhang X, Han X, Jiang Z, et al. Atomically dispersed hierarchically ordered porous Fe-N-C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-Air battery. Nano Energy 2020;71:104547.
149. Yang ZK, Yuan CZ, Xu AW. A rationally designed Fe-tetrapyridophenazine complex: a promising precursor to a single-atom Fe catalyst for an efficient oxygen reduction reaction in high-power Zn-air cells. Nanoscale 2018;10:16145-52.
150. Lyu X, Li G, Chen X, et al. Atomic cobalt on defective bimodal mesoporous carbon toward efficient oxygen reduction for zinc-air batteries. Small Methods 2019;3:1800450.
151. Wang J, Liu W, Luo G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ Sci 2018;11:3375-9.
152. Zheng W, Chen F, Zeng Q, et al. A universal principle to accurately synthesize atomically dispersed metal-N4 sites for CO2 electroreduction. Nanomicro Lett 2020;12:108.
153. Hai X, Xi S, Mitchell S, et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat Nanotechnol 2022;17:174-81.