REFERENCES
2. Ghobarah A. Performance-based design in earthquake engineering: state of development. Eng Struct 2001;23:878-84.
3. Dawei Z, Jinyu Z, Chunqiu L, Zhiling W. A short review of reliability-based design optimization. In: IOP Conference Series: Materials Science and Engineering. vol. 1043; 2021. p. 032041.
4. Sullivan TJ, Welch DP, Calvi GM. Simplified seismic performance assessment and implications for seismic design. Earthq Eng Eng Vib 2014;13:95-122.
5. Vrouwenvelder ACWM. Developments towards full probabilistic design codes. Struct Safe 2002;24:417-32.
6. Ministry of Housing and Urban-rural Development of the People's Republic of China. GB 50011-2010: Code for seismic design of buildings; 2010. Available from: https://www.chinesestandard.net/PDF.aspx/GB50011-2010.
8. Peng Y, Ma Y, Huang T, De Domenico D. Reliability-based design optimization of adaptive sliding base isolation system for improving seismic performance of structures. Reliab Eng Syst Safe 2021;205:107167.
9. Aloisio A, Contento A, Alaggio R, Briseghella B, Fragiacomo M. Probabilistic assessment of a light-timber frame shear wall with variable pinching under repeated earthquakes. J Struct Eng 2022;148:04022178.
11. Zhao YG, Ono T. A general procedure for first/second-order reliability method (FORM/SORM). Struct Safe 1999;21. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0167473099000089.
12. Hu Z, Du X. Reliability-based design optimization under stationary stochastic process loads. Eng Optimiz 2016;48:1296-312.
13. Hu Z, Mansour R, Olsson M, Du X. Second-order reliability methods: a review and comparative study. Struct Multidiscipl Optimiz 2021;64:3233-63.
14. Youn BD, Choi KK, Park YH. Hybrid analysis method for reliability-based design optimization. J Mech Des 2003;125:221-32.
15. Yang M, Zhang D, Jiang C, Han X, Li Q. A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems. Reliab Eng Syst Safe 2021;215:107736.
16. Yang M, Zhang D, Han X. New efficient and robust method for structural reliability analysis and its application in reliability-based design optimization. Compu Meth Appl Mech Eng 2020;366:113018.
17. Yang M, Zhang D, Jiang C, Wang F, Han X. A new solution framework for time-dependent reliability-based design optimization. Compu Meth Appl Mech Eng 2024;418:116475.
18. Wang L, Zhao Y, Liu J. A Kriging-based decoupled non-probability reliability-based design optimization scheme for piezoelectric PID control systems. Mech Syst Sig Process 2023;203:110714.
19. Meng Z, Li G, Wang BP, Hao P. A hybrid chaos control approach of the performance measure functions for reliability-based design optimization. Comput Struct 2015;146:32-43.
20. Rubinstein RY, Kroese DP. Simulation and the monte carlo method. 1st ed. Wiley Series in Probability and Statistics. Wiley; 2016.
21. Peng Y, Chen J, Li J. Nonlinear response of structures subjected to stochastic excitations via probability density evolution method. Adv Struct Eng 2014;17:801-16.
22. Wang L, Zhou Z, Liu J. Interval-based optimal trajectory tracking control method for manipulators with clearance considering time-dependent reliability constraints. Aero Sci Techn 2022;128:107745.
23. Li J, Chen J. The principle of preservation of probability and the generalized density evolution equation. Struct Safe 2008;30:65-77.
24. Li J, Chen J, Fan W. The equivalent extreme-value event and evaluation of the structural system reliability. Struct Safe 2007;29:112-31.
25. Chen J, Li J. The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters. Struct Safe 2007;29:77-93.
26. Wang D, Li J. Physical random function model of ground motions for engineering purposes. Sci Chin TechnScie 2011;54:175-82.
27. Ai XQ, Li J. Random model of earthquake ground motion for engineering site basing on stochastic physical process. In: International Collaboration in Lifeline Earthquake Engineering 2016. Shanghai, China: American Society of Civil Engineers; 2017. pp. 390–95.
28. Zhangjun L, Xinxin R, Zixin L. Performance-based global reliability assessment of a high-rise frame-core tube structure subjected to multi-dimensional stochastic earthquakes. Earthq Eng Eng Vib 2022;21:395-415.
29. Marano GC, Rosso MM, Aloisio A, Cirrincione G. Generative adversarial networks review in earthquake-related engineering fields. Bull Earthquake Eng 2023; doi: 10.1007/s10518-023-01645-7.
30. Safaeian Hamzehkolaei N, Miri M, Rashki M. An enhanced simulation-based design method coupled with meta-heuristic search algorithm for accurate reliability-based design optimization. Eng Comput 2016;32:477-95.
31. Shayanfar M, Abbasnia R, Khodam A. Development of a GA-based method for reliability-based optimization of structures with discrete and continuous design variables using OpenSees and Tcl. Finite Eleme Anal Des 2014;90:61-73.
32. Zou XK, Chan CM. Optimal drift performance design of base isolated buildings subject to earthquake loads. Comput Aid Optim Des Struct 2001:VⅡ.
33. Zou XK. Integrated design optimization of base-isolated concrete buildings under spectrum loading. Struct Multidisc Optim 2008;36:493-507.
34. Zou XK, Wang Q, Li G, Chan CM. Integrated reliability-based seismic drift design optimization of base-isolated concrete buildings. J Struct Eng 2010;136:1282-95.
35. Lu DG, Song PY, Yu XH. Analysis of global reliability of structures: FORM vs. HOMM. In: Safety, Reliability, Risk and Life-Cycle Performance of Structures & Infrastructures. London; 2013.
36. Castaldo P, Miceli E. Optimal single concave sliding device properties for isolated multi-span continuous deck bridges depending on the ground motion characteristics. Soil Dynam Earthq Eng 2023;173:108128.
37. Peng Y, Ding L, Liu J, Chen J. Probabilistic analysis of seismic mitigation of base‐isolated structure with sliding hydromagnetic bearings based on finite element simulations. Earthqu Eng Resili 2023;2:194-210.
38. Sun P, Peng Y. Probabilistic design optimization of TMDI system for seismic mitigation subjected to stochastic ground motions. Dublin, Ireland; 2023. Available from: http://www.tara.tcd.ie/bitstream/handle/2262/103432/submission_355.pdf?sequence=1.
39. Peng Y, Ghanem R, Li J. Generalized optimal control policy for stochastic optimal control of structures: GENERALIZED CONTROL POLICY FOR STOCHASTIC OPTIMAL CONTROL. Struct Control Health Monit 2013;20:187-209.
40. Xian J, Su C, Guo H. Seismic reliability analysis of energy-dissipation structures by combining probability density evolution method and explicit time-domain method. Struct Safe 2021;88:102010.
41. Chen JB, Lin PH, Li J. First-passage reliability evaluation based on the probability density evolution of stochastic processes. In: Vulnerability, Uncertainty, and Risk. Liverpool, UK: American Society of Civil Engineers; 2014. pp. 782–91.
42. Miceli E, Castaldo P. Robustness improvements for 2D reinforced concrete moment resisting frames: Parametric study by means of NLFE analyses. Struct Concr 2023:suco.202300443.
43. Zou X. Optimal seismic performance-based design of reinforced concrete buildings. The Hong Kong University of Science and Technology; 2002. Available from: https://xueshu.baidu.com/usercenter/paper/show?paperid=157f0xs0cj580xd0v2590630hw418322.
45. Mazzoni S, McKenna F, Scott MH, Fenves GL. OpenSees command language manual. Berkley: University of California; 2006. Available from: http://opensees.berkeley.edu/manuals/usermanual.
46. Fragiadakis M. Response spectrum analysis of structures subjected to seismic actions. In: Beer M, Kougioumtzoglou IA, Patelli E, Au ISK, editors. Encyclopedia of Earthquake Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. pp. 1–18.