REFERENCES

1. Huang D, Wang G, Du C, Jin F, Feng K, Chen Z. An integrated SEM-Newmark model for physics-based regional coseismic landslide assessment. Soil Dyn Earthq Eng 2020;132:106066.

2. Zhao X, Hu K, Burns SF, Hu H. Classification and sudden departure mechanism of high-speed landslides caused by the 2008 Wenchuan earthquake. Environ Earth Sci 2019;78:125.

3. Du W, Huang D, Wang G. Quantification of model uncertainty and variability in Newmark displacement analysis. Soil Dynam Earthq Eng 2018;109:286-98.

4. Du W, Wang G, Huang D. Evaluation of seismic slope displacements based on fully coupled sliding mass analysis and NGA-West2 database. J Geotech Geoenviron Eng 2018;144:06018006.

5. Wang M, Li D, Du W. Probabilistic seismic displacement hazard assessment of earth slopes incorporating spatially random soil parameters. J Geotech Geoenviron Eng 2021;147:04021119.

6. Li D, Wang M, Du W. Influence of spatial variability of soil strength parameters on probabilistic seismic slope displacement hazard analysis. Eng Geol 2020;276:105744.

7. Rathje EM, Saygili G. Probabilistic assessment of earthquake-induced sliding displacements of natural slopes. BNZSee 2009;42:18-27.

8. Nayek PS, Gade M. Artificial neural network-based fully data-driven models for prediction of newmark sliding displacement of slopes. Neural Comput Appl 2022;34:9191-203.

9. Bray JD, Travasarou T. Simplified procedure for estimating earthquake-induced deviatoric slope displacements. J Geotech Geoenviron Eng 2007;133:381-92.

10. Jibson RW. Regression models for estimating coseismic landslide displacement. Eng Geol 2007;91:209-18.

11. Rathje EM, Antonakos G. A unified model for predicting earthquake-induced sliding displacements of rigid and flexible slopes. Eng Geol 2011;122:51-60.

12. Feng W, Lu Z, Yi X, Dong S. A dynamic method to predict the earthquake-triggered sliding displacement of slopes. Math Probl Eng 2021;2021:1-11.

13. Fotopoulou SD, Pitilakis KD. Predictive relationships for seismically induced slope displacements using numerical analysis results. Bull Earthq Eng 2015;13:3207-38.

14. Cho Y, Rathje EM. Generic predictive model of earthquake-induced slope displacements derived from finite-element analysis. J Geotech Geoenviron Eng 2022;148:04022010.

15. Sulsky D, Chen Z, Schreyer HL. A particle method for history-dependent materials. Comp Methods Appl Mech Eng 1994;118:179-96.

16. Nguyen TS, Yang K, Wu Y, Teng F, Chao W, Lee W. Post-failure process and kinematic behavior of two landslides: case study and material point analyses. Comput Geotech 2022;148:104797.

17. Wang B, Vardon P, Hicks M. Investigation of retrogressive and progressive slope failure mechanisms using the material point method. Compu Geotech 2016;78:88-98.

18. Qu C, Wang G, Feng K, Xia Z. Large deformation analysis of slope failure using material point method with cross-correlated random fields. J Zhejiang Univ Sci A 2021;22:856-69.

19. Feng K, Wang G, Huang D, Jin F. Material point method for large-deformation modeling of coseismic landslide and liquefaction-induced dam failure. Soil Dyn Earthq Eng 2021;150:106907.

20. Troncone A, Pugliese L, Conte E. Analysis of an excavation-induced landslide in stiff clay using the material point method. Eng Geol 2022;296:106479.

21. Feng K, Huang D, Wang G, Jin F, Chen Z. Physics-based large-deformation analysis of coseismic landslides: a multiscale 3D SEM-MPM framework with application to the Hongshiyan landslide. Eng Geol 2022;297:106487.

22. Liu L, Zhang P, Zhang S, et al. Efficient evaluation of run-out distance of slope failure under excavation. Eng Geol 2022;306:106751.

23. Zhang X, Lian YP, Liu Y, Zhou X. Material point method. Beijing: Tsinghua University Press; 2013. pp. 15-26.

24. Ancheta TD, Darragh RB, Stewart JP, et al. NGA-west2 database. Earthq Spectra 2014;30:989-1005.

25. Zhang J, Chen S, Wang T, Wu F. Study on correlation between ground motion parameters and soil slope seismic response. Bull Eng Geol Environ 2022;81:226.

26. Taylor DW. Stability of earth slopes. J Boston Soc Civil Eng 1937;24:197-246. Available from: https://www.bscesjournal.org/journal/volume-24-number-3-july-1937/ [Last accessed on 30 June 2023]

27. Kanji MA. The relationship between drained friction angles and Atterberg limits of natural soils. Géotechnique 1974;24:671-4.

28. Qiu H, Cui P, Hu S, Regmi AD, Wang X, Yang D. Developing empirical relationships to predict loess slide travel distances: a case study on the Loess Plateau in China. Bull Eng Geol Environ 2018;77:1299-309.

29. Guo D, Hamada M, He C, Wang Y, Zou Y. An empirical model for landslide travel distance prediction in Wenchuan earthquake area. Landslides 2014;11:281-91.

30. Ma Z, Liao H, Dang F, Cheng Y. Seismic slope stability and failure process analysis using explicit finite element method. Bull Eng Geol Environ 2021;80:1287-301.

31. Pu X, Wan L, Wang P. Initiation mechanism of mudflow-like loess landslide induced by the combined effect of earthquakes and rainfall. Nat Hazards 2021;105:3079-97.

32. Zhang Z, Zeng R, Meng X, et al. Estimating landslide sliding distance based on an improved Heim sled model. CATENA 2021;204:105401.

33. Zou Z, Xiong C, Tang H, Criss RE, Su A, Liu X. Prediction of landslide runout based on influencing factor analysis. Environ Earth Sci 2017;76:723.

Disaster Prevention and Resilience
ISSN 2832-4056 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/