REFERENCES

1. Roy G, Choudhury S, Dutta S. An integral approach to probabilistic seismic hazard analysis and fragility assessment for reinforced concrete frame buildings. J Perform Constr Facil 2021;35:04021097.

2. Towashiraporn P, Dueñas-Osorio L, Craig JI, Goodno BJ. An application of the response surface metamodel in building seismic fragility estimation. The Proceedings of the 14th World Conference on Earthquake Engineering, 12-17 October 2008; China. Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.fema.gov/sites/default/files/2020-09/fema_hazus_earthquake-model_technical-manual_2.1.pdf [Last accessed on 30 May 2023].

3. Federal Emergency Management Agency (FEMA). HAZUS technical and user’s manual of advanced engineering building module (AEBM) “Hazus MH 2.1” 2013.

4. Steneker P, Wiebe L, Filiatrault A, Konstantinidis D. A framework for the rapid assessment of seismic upgrade viability using performance-based earthquake engineering. Earthq Spectra 2022;38:1761-87.

5. Zareian F, Krawinkler H. Assessment of probability of collapse and design for collapse safety. Earthq Eng Struct Dyn 2007;36:1901-14.

6. Rizzano G, Tolone I. Seismic assessment of existing RC frames: probabilistic approach. J Struct Eng 2009;135:836-52.

7. Burton H, Deierlein G. Simulation of seismic collapse in nonductile reinforced concrete frame buildings with masonry infills. J Struct Eng 2014;140:A4014016.

8. Pujari NN, Ghosh S, Lala S. Bayesian approach for the seismic fragility estimation of a containment shell based on the formation of through-wall cracks. Am Soc Civil Eng 2016;2:B4015004.

9. Feng D, Sun X, Li Y, Wu G. Two-parameter-based damage measure for probabilistic seismic analysis of concrete structures. Am Soc Civil Eng 2023;9:04022061.

10. Kazemi F, Jankowski R. Seismic performance evaluation of steel buckling-restrained braced frames including SMA materials. J Constr Steel Res 2023;201:107750.

11. Prasad JS, Singh Y, Kaynia AM, Lindholm C. Socioeconomic clustering in seismic risk assessment of urban housing stock. Earthq Spectra 2009;25:619-41.

12. Surana M, Meslem A, Singh Y, Lang DH. Analytical evaluation of damage probability matrices for hill-side RC buildings using different seismic intensity measures. Eng Struct 2020;207:110254.

13. Kappos AJ, Panagopoulos G, Panagiotopoulos C, Penelis G. A hybrid method for the vulnerability assessment of R/C and URM buildings. Bull Earthq Eng 2006;4:391-413.

14. Haldar P, Singh Y. Seismic performance and vulnerability of indian code-designed RC frame buildings. ISET J Earthq Technol 2009;46:29-45.

15. Haselton CB, Baker JW, Liel AB, Deierlein GG. Accounting for ground-motion spectral shape characteristics in structural collapse assessment through an adjustment for epsilon. J Struct Eng 2011;137:332-44.

16. Baker JW. Efficient Analytical fragility function fitting using dynamic structural analysis. Earthq Spectra 2015;31:579-99.

17. Rodríguez J, Aldabagh S, Alam MS. Incremental dynamic analysis-based procedure for the development of loading protocols. J Bridge Eng 2021;26:04021080.

18. Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthq Eng Struct Dyn 2002;31:491-514.

19. D’Ayala D, Meslem A, Vamvatsikos D, Porter K, Rossetto T, Silva V. Guidelines for analytical vulnerability assessment of low/mid-rise buildings. vulnerability global component project. GEM Technical Report 2015-08 v1.0.0 08:162. Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://cloud-storage.globalquakemodel.org/public/wix-new-website/pdf-collections-wix/publications/Guidelines%20for%20Analytical%20Vulnerability%20Assessment%20-%20Low_Mid-Rise.pdf [Last accessed on 30 May 2023].

20. Rajkumari S, Thakkar K, Goyal H. Fragility analysis of structures subjected to seismic excitation: a state-of-the-art review. Structures 2022;40:303-16.

21. Masoomi H, van de Lindt JW. Community-resilience-based design of the built environment. Am Soc Civil Eng 2019;5:04018044.

22. Gentile R, Galasso C. Gaussian process regression for seismic fragility assessment of building portfolios. Struct Saf 2020;87:101980.

23. Sousa R, Batalha N, Silva V, Rodrigues H. Seismic fragility functions for Portuguese RC precast buildings. Bull Earthq Eng 2021;19:6573-90.

24. Yoshikawa H, Goda K. Financial seismic risk analysis of building portfolios. Nat Hazards Rev 2014;15:112-20.

25. Lin P, Wang N. Building portfolio fragility functions to support scalable community resilience assessment. Sustain Resilient Infrastruct 2016;1:108-22.

26. Maio R, Tsionis G, Sousa ML, Dimova SL. Review of fragility curves for seismic risk assessment of buildings in Europe. The Proceedings of 16th World Conference on Earthquake Engineering; 9-13 January 2017; Santiago Chile.

27. Giordano N, De Luca F, Sextos A. Analytical fragility curves for masonry school building portfolios in Nepal. Bull Earthq Eng 2021;19:1121-50.

28. Martins L, Silva V. Development of a fragility and vulnerability model for global seismic risk analyses. Bull Earthq Eng 2021;19:6719-45.

29. Surana M, Singh Y, Lang DH. Seismic characterization and vulnerability of building stock in hilly regions. Nat Hazards Rev 2018;19:04017024.

30. Meneses-loja J, Aguilar Z. Seismic vulnerability of school buildings in Lima, Peru. The Proceedings of 13th World Conference on Earthquake Engineering, 1-6 August 2004; Vancouver, Canada.

31. Sarkar PK, Ghosh S, Chakraborty S. An efficient responses surface method for seismic fragility analysis of existing building frame. The Proceedings of 15th Symposium of Earthquake Engineering, October 2015; Roorkee.

32. Baker JW. Measuring bias in structural response caused by ground motion scaling. The Proceedings of 8th Pacific Conference on Earthquake Engineering, 5-7 December 2007; Singapore.

33. Gunthal G, Musson R, Schwarz J, Stucchi M. The European macroseismic scale (MSK-92). Terra Nova 1993;5:305-305. Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://law.resource.org/pub/in/bis/S03/is.1893.1984.pdf [Last accessed on 30 May 2023].

34. Indian standard criteria for earthquake resistant design of structures. New Delhi: Bureau of Indian Standards; 1893.

35. Bureau of Indian Standards New Delhi. Criteria for earthquake resistant design of structures - general provisions and buildings part-1. New Delhi: Bureau of Indian Standards; 2002; pp. 1-39.

36. Part-1. Criteria for earthquake resistant design of structures, Part 1: general provisions and buildings. New Delhi: Bureau of Indian Standards; 1893; pp. 1-44.

37. Antony J. Training for design of experiments using a catapult. Qual Reliab Eng Int 2002;18:29-35.

38. Antony J. Screening designs. Design of experiments for engineers and scientists. Amsterdam, The Netherlands: Elsevier; 2014. pp. 51-62.

39. Jones B, Nachtsheim CJ. Effective design-based model selection for definitive screening designs. Technometrics 2017;59:319-29.

40. Montgomery DC. Design and analysis of experiments, 8th edition. Hoboken, New Jersey: Wiley, 2013.

41. Simpson TW, Lin DKJ, Chen W. Sampling strategies for computer experiments: design and analysis. Int J Reliab Appl 2001;2:209-40. Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.personal.psu.edu/users/j/x/jxz203/lin/Lin_pub/2001_IJRA.pdf [Last accessed on 30 May 2023].

42. Lallemant D, Kiremidjian A, Burton H. Statistical procedures for developing earthquake damage fragility curves. Earthq Eng Struct Dyn 2015;44:1373-89.

43. Ader T, Grant DN, Free M, Villani M, Lopez J, Spence R. An unbiased estimation of empirical lognormal fragility functions with uncertainties on the ground motion intensity measure. J Earthq Eng 2020;24:1115-33.

44. Acevedo AB, Yepes-estrada C, González D, et al. Seismic risk assessment for the residential buildings of the major three cities in Colombia: Bogotá, Medellín, and Cali. Earthq Spectra 2020;36:298-320.

45. Tafti M, Amini Hosseini K, Mansouri B. Generation of new fragility curves for common types of buildings in Iran. Bull Earthq Eng 2020;18:3079-99.

46. Wen YK, Wu CL. Uniform hazard ground motions for mid-america cities. Earthq Spectra 2001;17:359.

48. Americal society of civil engineers (ASCE/SEI 7-16). Minimum design loads and associated criteria for buildings and other structures. 2017.

49. Roy G, Choudhury S, Dutta S. A Case study of probabilistic seismic hazard analysis using grid-based approach in area sources and computation of hazard deaggregation. In: Fonseca de Oliveira Correia JA, Choudhury S, Dutta S, editors. Advances in structural mechanics and applications. Cham: Springer International Publishing; 2022. pp. 479-93.

50. Roy G, Dutta S, Choudhury S. An integrated uncertainty quantification framework for probabilistic seismic hazard analysis. Am Soc Civil Eng 2023;9:04023017.

51. Rodriguez ME, Aristizabal JC. Evaluation of a seismic damage parameter. Earthq Eng Struct Dyn 1999;28:463-77.

52. Wong KKF, Wang Y. Energy-based damage assessment on structures during earthquakes. Struct Des Tall Build 2001; 10:135-54.

53. Park Y, Ang AH, Wen YK. Seismic damage analysis of reinforced concrete buildings. J Struct Eng 1985;111:740-57.

54. Mibang D, Choudhury S. Damage index evaluation of frame-shear wall building considering multiple demand parameters. J Build Rehabil 2021;6:40.

55. Mibang D, Choudhury S. Prediction evaluation of Global damage index of RC dual system buildings by support vector regression method. Innov Infrastruct Solut 2022;7:169.

56. ASCE. Fema 356. Prestandard and commentary for the seismic rehabilitation of building. Rehabilitation 2000. Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.nehrp.gov/pdf/fema356.pdf [Last accessed on 30 May 2023].

57. Kircher CA. Earthquake loss estimation methods for welded steel moment-frame buildings. Earthq Spectra 2003;19:365-84.

58. Lin DKJ, Tu W. Dual response surface optimization. J Qual Technol 1995;27:34-9.

59. Papila M, Haftka RT. Response surface approximations: noise, error repair, and modeling errors. AIAA J 2000;38:2336-43.

60. FEMA 274, ATC, NEHRP commentary on the guidelines for the seismic rehabilitation of buildings. Washington, DC: Federal Emergency Management Agency; 1997.

61. Choudhury S, Singh SM. A unified approach to performance-based design of RC frame buildings. J Inst Eng India Ser A 2013;94:73-82.

62. Das TK, Choudhury S. Developments in the unified performance-based seismic design. J Build Rehabil 2023;8:13.

63. Kayal JR. Seismotectonics of Northeast India: a review. J Geophys 1998;19:9-34. Available from: https://www.semanticscholar.org/paper/Seismicity-of-northeast-India-and-surroundings-%3A-Kayal/e3a47c0ab06918f78a8a9da5d7672023c33ff826 [Last accessed on 30 May 2023].

64. Srividya A, Ranganathan R. Reliability based optimal design of reinforced concrete frames. Comput Struct 1995;57:651-61.

65. Lu R, Luo Y, Conte JP. Reliability evaluation of reinforced concrete beams. Struct Saf 1994;14:277-98.

66. Ozmen HB, Inel M, Senel SM, Kayhan AH. Load carrying system characteristics of existing Turkish RC building stock. Int J Civil Eng 2015;13:76-91.

67. Faroz SA, Pujari NN, Ghosh S. Reliability of a corroded RC beam based on Bayesian updating of the corrosion model. Eng Struct 2016;126:457-68.

Disaster Prevention and Resilience
ISSN 2832-4056 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/