REFERENCES
1. Ang AHS, Tang WH. Probability concepts in engineering planning and design, vol. 2: Decision, risk, and reliability. New York, NY, USA: John Wiley & Sons, Inc.; 1984.
2. Madsen HO, Krenk S, Lind NC. Methods of structural safety Mineola, New York: Dover Publications, Inc.; 2006.
3. Melchers RE, Beck AT. Structural reliability analysis and prediction. New York, NY, USA: John Wiley & Sons, Inc.; 2018. Available from: https://www.wiley.com/en-hk/Structural+Reliability+Analysis+and+Prediction%2C+3rd+Edition-p-9781119265993 [Last accessed on 9 May 2022].
4. Nataf A. Determination des distribution don t les marges sont donnees. Comptes Rendus Acad Sci 1962;225:42-3.
5. Grigoriu M. Simulation of stationary Non-Gaussian translation processes. J Eng Mech 1998;124:121-6.
6. Chen H. Initialization for NORTA: Generation of random vectors with specified marginals and correlations. INFORMS J Comput 2001;13:312-31.
7. Embrechts P, McNeil AJ, Straumann D. Correlation and dependence in risk management: properties and pitfalls. In: Dempster MAH, editor. Risk management: value at risk and beyond. Cambridge: Cambridge University Press; 2002. pp. 176-223.
10. Zhao Y, Zhang X, Lu Z. A flexible distribution and its application in reliability engineering. Reliab Eng Syst Saf 2018;176:1-12.
11. Lu Z, Zhao Z, Zhang X, Li C, Ji X, Zhao Y. Simulating stationary non-gaussian processes based on unified hermite polynomial model. J Eng Mech 2020;146:04020067.
12. Li ST, Hammond JL. Generation of pseudorandom numbers with specified univariate distributions and correlation coefficients. IEEE Trans Syst Man Cybern 1975;SMC-5:557-61.
13. Liu P, Der Kiureghian A. Multivariate distribution models with prescribed marginals and covariances. Probabilist Eng Mech 1986;1:105-12.
14. Lurie PM, Goldberg MS. An approximate method for sampling correlated random variables from partially-specified distributions. Manag Sci 1998;44:203-18.
15. Yang I. Distribution-free Monte Carlo simulation: premise and refinement. J Constr Eng Manag 2008;134:352-60.
16. Cario MC, Nelson BL. Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix, technical report. Evanston, IL: Department of Industrial Engineering and Management Sciences, Northwestern University; 1997. [Last accessed on 9 May 2022].
17. Higham NJ. Computing the nearest correlation matrix - a problem from finance. IMA J Numer Anal 2002;22:329-43.
18. Qi H, Sun D. A quadratically convergent newton method for computing the nearest correlation matrix. SIAM J Matrix Anal Appl 2006;28:360-85.
19. Ghanem RG, Spanos PD. Stochastic finite elements: a spectral approach. Mineola, NY, USA: Courier Corporation; 2003. Available from: https://link.springer.com/book/10.1007/978-1-4612-3094-6 [Last accessed on 9 May 2022].
20. Shinozuka M, Jan C. Digital simulation of random processes and its applications. J Sound Vib 1972;25:111-28.
22. Shinozuka M, Deodatis G. Simulation of multi-dimensional gaussian stochastic fields by spectral representation. Appl Mech Rev 1996;49:29-53.
23. Yamazaki F, Shinozuka M. Digital generation of non-Gaussian stochastic fields. J Eng Mech 1988;114:1183-97.
24. Deodatis G, Micaletti RC. Simulation of highly skewed non-Gaussian stochastic processes. J Eng Mech 2001;127:1284-95.
25. Ferrante F, Arwade S, Graham-brady L. A translation model for non-stationary, non-Gaussian random processes. Probabilist Eng Mech 2005;20:215-28.
26. Shields M, Deodatis G. Estimation of evolutionary spectra for simulation of non-stationary and non-Gaussian stochastic processes. Comput Struct 2013;126:149-63.
27. Vanmarcke EH, Fenton GA. Conditioned simulation of local fields of earthquake ground motion. Struct Saf 1991;10:247-64.
28. Kameda H, Morikawa H. Conditioned Stochastic processes for conditional random fields. J Eng Mech 1994;120:855-75.
29. Hu L, Xu YL, Zheng Y. Conditional simulation of spatially variable seismic ground motions based on evolutionary spectra. Earthq Eng Struct Dyn 2012;41:2125-39.
30. Cui XZ, Hong HP. Conditional simulation of spatially varying multicomponent nonstationary ground motions: bias and Ill condition. J Eng Mech 2020;146:04019129.
31. Zhang J, Ellingwood B. Orthogonal series expansions of random fields in reliability analysis. J Eng Mech 1994;120:2660-77.
32. Phoon K, Huang S, Quek S. Simulation of second-order processes using Karhunen-Loeve expansion. Comput Struct 2002;80:1049-60.
33. Phoon K, Huang H, Quek S. Simulation of strongly non-Gaussian processes using Karhunen-Loeve expansion. Probabilist Eng Mech 2005;20:188-98.
34. Ossiander ME, Peszynska M, Vasylkivska VS. Conditional stochastic simulations of flow and transport with karhunen-loève expansions, stochastic collocation, and sequential gaussian simulation. J Appl Math 2014;2014:1-21.
35. Kim H, Shields MD. Modeling strongly non-Gaussian non-stationary stochastic processes using the iterative translation approximation method and Karhunen-Loève expansion. Comput Struct 2015;161:31-42.
36. Zheng Z, Dai H. Simulation of multi-dimensional random fields by Karhunen-Loève expansion. Comput Methods Appl Mech Eng 2017;324:221-47.
37. Anderson TW. An introduction to multivariate statistical analysis (Vol. 2). New York, NY, USA: Wiley; 2003. pp. 5-13.
38. Stuart A, Arnold S, Ord JK, O'Hagan A, Forster J. Kendall's advanced theory of statistics New York, NY, USA: Wiley. Inc.; 1994.
39. Tong YL. The Multivariate normal distribution. New York, NY, USA: Springer; 1990. pp. 181-201.
40. Higham NJ. Analysis of the cholesky decomposition of a semi-definite matrix. Oxford University Press; 1990. Available from: http://eprints.maths.manchester.ac.uk/1193/1/high90c.pdf [Last accessed on 9 May 2022].
41. Stefanou G. The stochastic finite element method: Past, present and future. Comput Methods Appl Mech Eng 2009;198:1031-51.
42. Xiu D. Numerical methods for stochastic computations: a spectral method approach. Princeton University Press; 2010. Available from: https://dl.acm.org/doi/book/10.5555/1893088 [Last accessed on 9 May 2022].
43. Gerbrands JJ. On the relationships between SVD, KLT and PCA. Pattern Recognition 1981;14:375-81.
44. Baraniuk R. Compressive sensing. IEEE Signal Process Mag 2007;24:118-21.