REFERENCES
1. Bagheri, S.; Julkapli, N. M.; Yehye, W. A. Catalytic conversion of biodiesel derived raw glycerol to value added products. Renew. Sustain. Energy. Rev. 2015, 41, 113-27.
2. Wang, H.; Li, H.; Lee, C. K.; Mat Nanyan, N. S.; Tay, G. S. A systematic review on utilization of biodiesel-derived crude glycerol in sustainable polymers preparation. Int. J. Biol. Macromol. 2024, 261, 129536.
3. Chong, C. C.; Aqsha, A.; Ayoub, M.; et al. A review over the role of catalysts for selective short-chain polyglycerol production from biodiesel derived waste glycerol. Environ. Technol. Innov. 2020, 19, 100859.
4. Alazaiza, M. Y. D.; Ahmad, Z.; Albahnasawi, A.; Nassani, D. E.; Alenezi, R. A. Biomass processing technologies for bioenergy production: factors for future global market. Int. J. Environ. Sci. Technol. 2024, 21, 2307-24.
5. Singh, N.; Nyuur, R.; Richmond, B. Renewable energy development as a driver of economic growth: evidence from multivariate panel data analysis. Sustainability 2019, 11, 2418.
6. Husna, M.; Tabak, Y.; Yıldız, M. Glycerol as a feedstock for chemical synthesis. ChemBioEng. Rev. 2024, 11, e202400010.
7. Yang, L.; Li, X.; Chen, P.; Hou, Z. Selective oxidation of glycerol in a base-free aqueous solution: a short review. Chin. J. Catal. 2019, 40, 1020-34.
8. Hu, X.; Lu, J.; Liu, Y.; Chen, L.; Zhang, X.; Wang, H. Sustainable catalytic oxidation of glycerol: a review. Environ. Chem. Lett. 2023, 21, 2825-61.
9. Dodekatos, G.; Schünemann, S.; Tüysüz, H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS. Catal. 2018, 8, 6301-33.
10. Wang, Y.; Zhou, J.; Guo, X. Catalytic hydrogenolysis of glycerol to propanediols: a review. RSC. Adv. 2015, 5, 74611-28.
11. da Silva Ruy, A. D.; de Brito Alves, R. M.; Reis Hewer, T. L.; de Aguiar Pontes, D.; Gomes Teixeira, L. S.; Magalhães Pontes, L. A. Catalysts for glycerol hydrogenolysis to 1,3-propanediol: a review of chemical routes and market. Catal. Today. 2021, 381, 243-53.
12. Sun, D.; Yamada, Y.; Sato, S.; Ueda, W. Glycerol hydrogenolysis into useful C3 chemicals. Appl. Catal. B. Environ. 2016, 193, 75-92.
13. Abdullah, A.; Zuhairi Abdullah, A.; Ahmed, M.; et al. A review on recent developments and progress in sustainable acrolein production through catalytic dehydration of bio-renewable glycerol. J. Clean. Prod. 2022, 341, 130876.
14. Basu, S.; Sen, A. K. A review on catalytic dehydration of glycerol to acetol. ChemBioEng. Rev. 2021, 8, 633-53.
15. Xie, Q.; Li, S.; Gong, R.; et al. Microwave-assisted catalytic dehydration of glycerol for sustainable production of acrolein over a microwave absorbing catalyst. Appl. Catal. B. Environ. 2019, 243, 455-62.
16. Keogh, J.; Inrirai, P.; Artioli, N.; Manyar, H. Nanostructured solid/liquid acid catalysts for glycerol esterification: the key to convert liability into assets. Nanomaterials 2024, 14, 615.
17. Perez, F. M.; Gatti, M. N.; Santori, G. F.; Pompeo, F. Transformations of glycerol into high-value-added chemical products: ketalization and esterification reactions. Reactions 2023, 4, 569-634.
18. Zhou, D.; Wang, L.; Chen, X.; et al. Reaction mechanism investigation on the esterification of rosin with glycerol over annealed Fe3O4/MOF-5 via kinetics and TGA-FTIR analysis. Chem. Eng. J. 2020, 401, 126024.
19. Chen, X.; Shu, X.; Zhu, Y.; et al. Highly dispersed MgInCe-mixed metal oxides catalyzed direct carbonylation of glycerol and CO2 into glycerol carbonate. Chin. J. Chem. Eng. 2024, 72, 153-63.
20. Ke, Y.; Xu, H.; Wang, X.; Liu, H.; Yuan, H. Production of glycerol carbonate by coupling glycerol and CO2 over various metal oxide catalyst. J. CO2. Util. 2024, 83, 102813.
21. Wang, Z.; Guo, S.; Wang, Z.; Li, F.; Xue, W.; Wang, Y. A highly efficient rod-like-CeO2-supported palladium catalyst for the oxidative carbonylation of glycerol to glycerol carbonate. RSC. Adv. 2021, 11, 17072-9.
22. Kang, Z.; Shen, Y.; Zheng, Y.; et al. High-active CoPi-Ov nanolayer promotes photoelectrochemical glycerol oxidation for efficient dihydroxyacetone production. Chem. Eng. J. 2025, 515, 163904.
23. Su, K.; Ren, S.; Gao, R. T.; Bai, G. E.; Wu, L.; Wang, L. Bias-free solar-driven ammonia coupled to C3-dihydroxyacetone production through photoelectrochemistry. Angew. Chem. Int. Ed. Engl. 2025, 64, e202422443.
24. Tabassum, N.; Pothu, R.; Pattnaik, A.; et al. Heterogeneous catalysts for conversion of biodiesel-waste glycerol into high-added-value chemicals. Catalysts 2022, 12, 767.
25. Wang, Y.; Xiao, Y.; Xiao, G. Sustainable value-added C3 chemicals from glycerol transformations: a mini review for heterogeneous catalytic processes. Chin. J. Chem. Eng. 2019, 27, 1536-42.
26. Liu, Y.; Zhang, B.; Yan, D.; Xiang, X. Recent advances in the selective oxidation of glycerol to value-added chemicals via photocatalysis/photoelectrocatalysis. Green. Chem. 2024, 26, 2505-24.
27. Liu, B.; Greeley, J. Decomposition pathways of glycerol via C–H, O–H, and C–C bond scission on Pt(111): a density functional theory study. J. Phys. Chem. C. 2011, 115, 19702-9.
28. Meng, F.; Yan, H.; Su, Y.; et al. Unsaturated Fe–Ov–Ti5c structure with enhanced C–H and C–C bond activation ability for selective oxidation of glycerol to glycolic acid. ACS. Sustainable. Chem. Eng. 2024, 12, 10239-51.
29. Koranian, P.; Huang, Q.; Dalai, A. K.; Sammynaiken, R. Chemicals production from glycerol through heterogeneous catalysis: a review. Catalysts 2022, 12, 897.
30. Kong, P. S.; Aroua, M. K.; Daud, W. M. A. W. Conversion of crude and pure glycerol into derivatives: a feasibility evaluation. Renew. Sustain. Energy. Rev. 2016, 63, 533-55.
31. Vitulano, F.; Uggeri, F.; Lattuada, L.; Minguzzi, A.; Vertova, A. Tackling electrocatalytic oxidation of glycerol to dihydroxyacetone: a comprehensive review. Curr. Opin. Electrochem. 2025, 51, 101665.
32. Chen, W.; Zhang, L.; Xu, L.; et al. Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid. Nat. Commun. 2024, 15, 2420.
33. Xia, Z.; Ma, C.; Fan, Y.; et al. Vacancy optimized coordination on nickel oxide for selective electrocatalytic oxidation of glycerol. ACS. Catal. 2024, 14, 1930-8.
34. Wen, L.; Zhang, X.; Abdi, F. F. Photoelectrochemical glycerol oxidation as a sustainable and valuable technology. Mater. Today. Energy. 2024, 44, 101648.
35. Yang, Y.; Nalesso, M.; Basagni, A.; et al. Photocatalytic oxidation of glycerol with red light employing quinacridone sensitized TiO2 nanoparticles. J. Mater. Chem. A. Mater. 2025, 13, 18436-44.
36. Liu, X.; Zou, Y.; Jiang, J. Sunlight-driven selective oxidation of glycerol on formate oxidase mimicking AuPt/TiO2. Appl. Catal. B. Environ. Energy. 2024, 350, 123927.
37. Ripoll, M.; Jackson, E.; Trelles, J. A.; Betancor, L. Dihydroxyacetone production via heterogeneous biotransformations of crude glycerol. J. Biotechnol. 2021, 340, 102-9.
38. Meng, Y.; Zou, S.; Zhou, Y.; et al. Activating molecular oxygen by Au/ZnO to selectively oxidize glycerol to dihydroxyacetone. Catal. Sci. Technol. 2018, 8, 2524-8.
39. Liu, S.; Sun, K.; Xu, B. Specific selectivity of Au-catalyzed oxidation of glycerol and other C3-polyols in water without the presence of a base. ACS. Catal. 2014, 4, 2226-30.
40. Yuan, Z.; Gao, Z.; Xu, B. Acid-base property of the supporting material controls the selectivity of Au catalyst for glycerol oxidation in base-free water. Chin. J. Catal. 2015, 36, 1543-51.
41. Yin, Y.; Tang, T.; Xu, C. Au/CuMgAl-hydrotalcite catalysts promoted by Cu+ and basic sites for selective oxidation of glycerol to dihydroxyacetone. Gold. Bull. 2017, 50, 319-26.
42. Wang, Y.; Liu, W.; Zhao, J.; Wang, Z.; Zhao, N. Oxidation of glycerol to dihydroxyacetone over highly stable Au catalysts supported on mineral-derived CuO-ZnO mixed oxide. Appl. Catal. A. Gen. 2024, 671, 119578.
43. Wang, Y.; Pu, Y.; Yuan, D.; et al. Selective oxidation of glycerol to dihydroxyacetone over Au/CuxZr1-xOy catalysts in base-free conditions. ACS. Appl. Mater. Interfaces. 2019, 11, 44058-68.
44. Xiong, Z.; Zhang, X.; Huang, J.; et al. Flower-shaped zinc oxide nanostructures loaded with Au nanoparticles for efficient and highly stable production of dihydroxyacetone from glycerol oxidation. Adv. Sustain. Syst. 2025, 9, 2400947.
45. Pan, Y.; Wu, G.; He, Y.; Feng, J.; Li, D. Identification of the Au/ZnO interface as the specific active site for the selective oxidation of the secondary alcohol group in glycerol. J. Catal. 2019, 369, 222-32.
46. Wu, G.; Zhao, G.; Sun, J.; et al. The effect of oxygen vacancies in ZnO at an Au/ZnO interface on its catalytic selective oxidation of glycerol. J. Catal. 2019, 377, 271-82.
47. Yuan, Z.; Wang, Y.; Xie, W.; et al. Manipulating the interfacial integration mode of a bio-templated porous ZSM-5 platform with an Au/CuZnOx catalyst for enhanced efficiency and recycling stability in glycerol conversion to 1,3-dihydroxyacetone. Nanoscale 2025, 17, 5259-69.
48. An, Z.; Ma, H.; Han, H.; et al. Insights into the multiple synergies of supports in the selective oxidation of glycerol to dihydroxyacetone: layered double hydroxide supported Au. ACS. Catal. 2020, 10, 12437-53.
49. Zhao, G.; Wu, G.; Liu, Y.; He, Y.; Feng, J.; Li, D. Preparation of AuPd/ZnO–CuO for the directional oxidation of glycerol to DHA. Catal. Sci. Technol. 2020, 10, 6223-34.
50. Zhao, M.; Yan, H.; Lu, R.; et al. Insight into the selective oxidation mechanism of glycerol to 1, 3-dihydroxyacetone over AuCu–ZnO interface. AIChE. J. 2022, 68, e17833.
51. Ning, X.; Li, Y.; Yu, H.; Peng, F.; Wang, H.; Yang, Y. Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone. J. Catal. 2016, 335, 95-104.
52. Xiao, Y.; Greeley, J.; Varma, A.; Zhao, Z.; Xiao, G. An experimental and theoretical study of glycerol oxidation to 1,3-dihydroxyacetone over bimetallic Pt-Bi catalysts. AIChE. J. 2017, 63, 705-15.
53. Feng, S.; Yi, J.; Miura, H.; Nakatani, N.; Hada, M.; Shishido, T. Experimental and theoretical investigation of the role of bismuth in promoting the selective oxidation of glycerol over supported Pt–Bi catalyst under mild conditions. ACS. Catal. 2020, 10, 6071-83.
54. Tang, T.; Zhang, H.; Wang, H.; et al. Sub-2 nm PtBi alloy nanoparticles on Bi-N-C single-atom catalyst for selective oxidation of glycerol to 1,3-dihydroxyacetone. Chem. Synth. 2025, 5, 28.
55. Yu, Z.; Fang, J.; Chen, W.; et al. Construction of a uniform Pt-Bi2O3 interface to enhance selective oxidation of glycerol to dihydroxyacetone. Chem. Eng. Sci. 2025, 304, 121113.
56. Duan, X.; Zhang, Y.; Pan, M.; et al. SbOx-promoted pt nanoparticles supported on CNTs as catalysts for base-free oxidation of glycerol to dihydroxyacetone. AIChE. J. 2018, 64, 3979-87.
57. Hirasawa, S.; Watanabe, H.; Kizuka, T.; Nakagawa, Y.; Tomishige, K. Performance, structure and mechanism of Pd–Ag alloy catalyst for selective oxidation of glycerol to dihydroxyacetone. J. Catal. 2013, 300, 205-16.
58. Wang, S.; Li, T.; Li, Y.; Yin, H.; Tian, Z.; Yu, H. Enhanced selective oxidation of glycerol to dihydroxyacetone over Pt@Sn-MFI zeolites. Ind. Eng. Chem. Res. 2024, 63, 16779-88.
59. Huang, N.; Zhang, Z.; Lu, Y.; et al. Assembly of platinum nanoparticles and single-atom bismuth for selective oxidation of glycerol. J. Mater. Chem. A. 2021, 9, 25576-84.
60. Feng, Y.; Bi, Y.; Wang, Y.; et al. Enhanced glycerol oxidation toward dihydroxyacetone over gold/palladium binary nanocatalysts by structure control. Chemistry 2025, 31, e202500601.
61. Cui, L.; Wang, Y.; Yuan, Z.; et al. Benchmarking catalytic activity and cyclic stability of glycerol oxidation to dihydroxyacetone over bio-templated porous ZSM-5 platform composite with Au/CuO. Int. J. Hydrogen. Energy. 2025, 119, 1-12.
62. Yan, H.; Li, S.; Feng, X.; et al. Rational screening of metal catalysts for selective oxidation of glycerol to glyceric acid from microkinetic analysis. AIChE. J. 2023, 69, e17868.
63. Li, Y.; Zaera, F. Factors affecting activity and selectivity in the oxidation of glycerol promoted by platinum catalysts. Catal. Sci. Technol. 2015, 5, 3773-81.
64. Zhou, J.; Hu, J.; Zhang, X.; et al. Facet effect of Pt nanocrystals on catalytical properties toward glycerol oxidation reaction. J. Catal. 2020, 381, 434-42.
65. Liang, D.; Gao, J.; Wang, J.; Chen, P.; Hou, Z.; Zheng, X. Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts. Catal. Commun. 2009, 10, 1586-90.
66. Li, Y.; Zaera, F. Sensitivity of the glycerol oxidation reaction to the size and shape of the platinum nanoparticles in Pt/SiO2 catalysts. J. Catal. 2015, 326, 116-26.
67. Yan, H.; Yao, S.; Liang, W.; et al. Selective oxidation of glycerol to carboxylic acids on Pt(111) in base-free medium: a periodic density functional theory investigation. Appl. Surf. Sci. 2019, 497, 143661.
68. Meng, Z.; Tran, D.; Hjelm, J.; Kristoffersen, H. H.; Rossmeisl, J. Insight into selectivity differences of glycerol electro-oxidation on Pt(111) and Ag(111). ACS. Catal. 2024, 14, 2455-62.
69. Chen, S.; Qi, P.; Chen, J.; Yuan, Y. Platinum nanoparticles supported on N-doped carbon nanotubes for the selective oxidation of glycerol to glyceric acid in a base-free aqueous solution. RSC. Adv. 2015, 5, 31566-74.
70. Tan, H.; Tall, O. E.; Liu, Z.; et al. Selective oxidation of glycerol to glyceric acid in base-free aqueous solution at room temperature catalyzed by platinum supported on carbon activated with potassium hydroxide. ChemCatChem 2016, 8, 1699-707.
71. Zhang, J.; Li, X.; Xu, M.; et al. Glycerol aerobic oxidation to glyceric acid over Pt/hydrotalcite catalysts at room temperature. Sci. Bull. 2019, 64, 1764-72.
72. Ren, Z.; Li, Y.; Yu, L.; Wang, L.; Yang, Y.; Wei, M. Pt/ZrO2 catalyst with metal-support synergistic effect towards glycerol selective oxidation. Chem. Eng. J. 2023, 468, 143623.
73. Yan, H.; Yao, S.; Zhao, S.; et al. Insight into the basic strength-dependent catalytic performance in aqueous phase oxidation of glycerol to glyceric acid. Chem. Eng. Sci. 2021, 230, 116191.
74. Yang, D.; Liu, X.; Song, F.; et al. Chemoselective oxidation of glycerol over platinum-based catalysts: toward the role of oxide promoter. ChemCatChem 2022, 14, e202200011.
75. Zhang, X.; Zhou, D.; Wang, X.; et al. Overcoming the deactivation of Pt/CNT by introducing CeO2 for selective base-free glycerol-to-glyceric acid oxidation. ACS. Catal. 2020, 10, 3832-7.
76. Liu, Y.; Zha, M.; Qin, H.; et al. Au-promoted Pt nanoparticles supported on MgO/SBA-15 as an efficient catalyst for selective oxidation of glycerol. AIChE. J. 2021, 67, e17196.
77. Yan, H.; Yao, S.; Yin, B.; et al. Synergistic effects of bimetallic PtRu/MCM-41 nanocatalysts for glycerol oxidation in base-free medium: structure and electronic coupling dependent activity. Appl. Catal. B. Environ. 2019, 259, 118070.
78. Dou, J.; Zhang, B.; Liu, H.; et al. Carbon supported Pt9Sn1 nanoparticles as an efficient nanocatalyst for glycerol oxidation. Appl. Catal. B. Environ. 2016, 180, 78-85.
79. Zhang, Y.; Zhang, X.; Yang, P.; Gao, M.; Feng, J.; Li, D. In situ topologically induced PtZn alloy @ ZnTiOx and the synergistic effect on glycerol oxidation. Appl. Catal. B. Environ. 2021, 298, 120634.
80. Landge, V. K.; Sonawane, S. H.; Chaudhari, R. V.; Babu, G. U. B. Selective oxidation of glycerol: a biomass-derived feedstock using the Pt–Cu Janus catalyst for value-added products. Ind. Eng. Chem. Res. 2021, 60, 185-95.
81. An, Z.; Zhang, Z.; Huang, Z.; et al. Pt1 enhanced C-H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid. Nat. Commun. 2022, 13, 5467.
82. Wang, C.; Jiang, X.; Wang, Y.; Tang, Y.; Zhou, J.; Fu, G. Recent advances in nonmetallic modulation of palladium-based electrocatalysts. Chem. Synth. 2023, 3, 8.
83. Li, D.; Zhao, X.; Zhou, Q.; et al. Vicinal hydroxyl group-inspired selective oxidation of glycerol to glyceric acid on hydroxyapatite supported Pd catalyst. Green. Energy. Environ. 2022, 7, 691-703.
84. Vajíček, S.; Štolcová, M.; Kaszonyi, A.; et al. Gel-type ion exchange resin stabilized Pd-Bi nanoparticles for the glycerol oxidation in liquid phase. J. Ind. Eng. Chem. 2016, 39, 77-86.
85. Kumar, A.; Belwal, M.; Mohan, V.; Maurya, R. R.; Vishwanathan, V. Catalytic vapor phase oxidation of glycerol to glyceric acid over activated carbon supported gold nanocatalysts. Int. J. Nanosci. 2020, 19, 2050007.
86. Ke, Y.; Zhu, C.; Li, J.; Liu, H.; Yuan, H. Catalytic oxidation of glycerol over Pt supported on MOF-derived carbon nanosheets. ACS. Omega. 2022, 7, 46452-65.
87. Choi, Y. B.; Nunotani, N.; Morita, K.; Imanaka, N. Selective glycerol oxidation to glyceric acid under mild conditions using Pt/CeO2–ZrO2–Fe2O3/SBA-16 catalysts. J. Asian. Ceram. Soc. 2022, 10, 178-87.
88. Huang, X.; Long, Z.; Wang, Z.; Li, S.; Zhang, P.; Leng, Y. Mesoporous silicon-carbon composites: novel supports of platinum nanoparticles for highly efficient selective oxidation of glycerol. Chem. Eng. J. 2023, 470, 144037.
89. Liao, S.; Huang, Q.; Zhou, S.; Gu, Y.; Li, J.; Hu, C. Base-free oxidation of glycerol to glyceric acid over Pt/biochar catalyst. Ind. Crops. Prod. 2025, 229, 120981.
90. Yan, H.; Zhao, M.; Wang, G.; et al. Manipulating Pt-ZnO interface for fast selective oxidation of glycerol to glyceric acid in base-free medium. Chem. Eng. J. 2024, 500, 156842.