REFERENCES
1. Ye, T. N.; Park, S. W.; Lu, Y.; et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 2020, 583, 391-5.
2. van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955-70.
3. Liang, X.; Jin, X.; Yu, S.; et al. CO-resistant hydrogenation over noble metal/α-MoC catalyst. Nat. Commun. 2025, 16, 4159.
4. Lin, L.; Zhou, W.; Gao, R.; et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80-3.
5. Wang, Z.; Yuan, H.; Tao, J.; et al. Trace of atomically dispersed Pd enables unprecedented butadiene semihydrogenation performance over copper catalyst. ACS. Catal. 2025, 15, 3810-22.
6. Martín, A. J.; Mitchell, S.; Mondelli, C.; Jaydev, S.; Pérez-Ramírez, J. Unifying views on catalyst deactivation. Nat. Catal. 2022, 5, 854-66.
7. Li, Y.; Liu, C.; Su, Y.; Zhao, Y.; Qiao, B. Maximized Ir atom utilization via downsizing active sites to single-atom scale for highly stable dry reforming of methane. Chem. Synth. 2025, 5, 8.
8. Jones, J.; Xiong, H.; DeLaRiva, A. T.; et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150-4.
9. Zhang, X.; Zhang, M.; Deng, Y.; et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 2021, 589, 396-401.