REFERENCES

1. Gasteiger, H. A.; Marković, N. M. Chemistry. Just a dream - or future reality? Science 2009, 324, 48-9.

2. Steele, B. C.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345-52.

3. Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197-203.

4. Turner, J. M. The matter of a clean energy future. Science 2022, 376, 1361.

5. Kittner, N.; Lill, F.; Kammen, D. M. Energy storage deployment and innovation for the clean energy transition. Nat. Energy. 2017, 2, 17125.

6. Xie, C.; Yan, D.; Chen, W.; et al. Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater. Today. 2019, 31, 47-68.

7. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.

8. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060-86.

9. Han, N.; Wang, Y.; Ma, L.; et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652-64.

10. Wang, X.; Sun, H.; He, T.; et al. Precisely constructing pentagon trapped single-atomic iron sites in defective carbon for efficient oxygen electroreduction. Chem. Catal. 2024, 4, 101007.

11. Guo, F.; Macdonald, T. J.; Sobrido, A. J.; Liu, L.; Feng, J.; He, G. Recent advances in ultralow-Pt-loading electrocatalysts for the efficient hydrogen evolution. Adv. Sci. 2023, 10, e2301098.

12. Li, Y.; Chen, C.; Zhao, G.; et al. Unveiling the activity origin of electrochemical oxygen evolution on heteroatom-decorated carbon matrix. Angew. Chem. Int. Ed. Engl. 2024, 63, e202411218.

13. Wu, Q.; Yan, X.; Jia, Y.; Yao, X. Defective carbon-based materials: controllable synthesis and electrochemical applications. EnergyChem 2021, 3, 100059.

14. Wang, X.; Mao, Z.; Mao, X.; et al. Dual integrating oxygen and sulphur on surface of CoTe nanorods triggers enhanced oxygen evolution reaction. Adv. Sci. 2023, 10, e2206204.

15. Kawashima, K.; Márquez, R. A.; Smith, L. A.; et al. A review of transition metal boride, carbide, pnictide, and chalcogenide water oxidation electrocatalysts. Chem. Rev. 2023, 123, 12795-3208.

16. Jia, Y.; Zhang, L.; Gao, G.; et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017.

17. Li, J.; Chen, M.; Cullen, D. A.; et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935-45.

18. Ding, S.; Yi, J.; Li, J.; et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.

19. Yan, X.; Jia, Y.; Yao, X. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 2018, 47, 7628-58.

20. Ortiz-Medina, J.; Wang, Z.; Cruz-Silva, R.; et al. Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv. Mater. 2019, 31, e1805717.

21. Wang, J.; Kong, H.; Zhang, J.; Hao, Y.; Shao, Z.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021, 116, 100717.

22. Fan, L.; Liu, P. F.; Yan, X.; et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 2016, 7, 10667.

23. Jorge, A. B.; Jervis, R.; Periasamy, A. P.; et al. 3D carbon materials for efficient oxygen and hydrogen electrocatalysis. Adv. Energy. Mater. 2020, 10, 1902494.

24. Guo, J.; Huo, J.; Liu, Y.; et al. Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. Small. Methods. 2019, 3, 1900159.

25. Zhao, W.; Yuan, P.; She, X.; et al. Sustainable seaweed-based one-dimensional (1D) nanofibers as high-performance electrocatalysts for fuel cells. J. Mater. Chem. A. 2015, 3, 14188-94.

26. Hu, C.; Dai, L. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, e1804672.

27. Singh, S. K.; Takeyasu, K.; Nakamura, J. Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater. 2019, 31, e1804297.

28. Hong, J.; Jin, C.; Yuan, J.; Zhang, Z. Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 2017, 29, 1606434.

29. Hu, C.; Paul, R.; Dai, Q.; Dai, L. Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chem. Soc. Rev. 2021, 50, 11785-843.

30. Zhu, J.; Mu, S. Defect engineering in carbon-based electrocatalysts: insight into intrinsic carbon defects. Adv. Funct. Mater. 2020, 30, 2001097.

31. Jia, Y.; Yao, X. Defects in carbon-based materials for electrocatalysis: synthesis, recognition, and advances. Acc. Chem. Res. 2023, 56, 948-58.

32. Guo, K.; Li, N.; Bao, L.; Zhang, P.; Lu, X. Intrinsic carbon structural imperfections for enhancing energy conversion electrocatalysts. Chem. Eng. J. 2023, 466, 143060.

33. Wang, X.; Huang, R.; Mao, X.; et al. Coupling Ni single atomic sites with metallic aggregates at adjacent geometry on carbon support for efficient hydrogen peroxide electrosynthesis. Adv. Sci. 2024, 11, e2402240.

34. Xu, X.; Pan, Y.; Zhong, Y.; et al. New undisputed evidence and strategy for enhanced lattice-oxygen participation of perovskite electrocatalyst through cation deficiency manipulation. Adv. Sci. 2022, 9, e2200530.

35. Mcbreen, J.; Olender, H.; Srinivasan, S.; Kordesch, K. V. Carbon supports for phosphoric acid fuel cell electrocatalysts: alternative materials and methods of evaluation. J. Appl. Electrochem. 1981, 11, 787-96.

36. Watanabe, M.; Sei, H.; Stonehart, P. The influence of platinum crystallite size on the electroreduction of oxygen. J. Electroanal. Chem. Interfacial. Electrochem. 1989, 261, 375-87.

37. Antolini, E. Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B. Environ. 2009, 88, 1-24.

38. Pinheiro, A. L. N.; Oliveira Neto, A.; Souza, E.; et al. Electrocatalysis on noble metal and noble metal alloys dispersed on high surface area carbon. J. New. Mater. Electrochem. Syst. 2003, 6, 1-8. http://hdl.handle.net/11449/224471. (accessed 2 Jul 2025).

39. Yan, X.; Jia, Y.; Zhang, L.; Yao, X. Platinum stabilized by defective activated carbon with excellent oxygen reduction performance in alkaline media. Chin. J. Catal. 2017, 38, 1011-20.

40. Yan, X.; Jia, Y.; Chen, J.; Zhu, Z.; Yao, X. Defective-activated-carbon-supported Mn-Co nanoparticles as a highly efficient electrocatalyst for oxygen reduction. Adv. Mater. 2016, 28, 8771-8.

41. Kim, S.; Park, S. Effect of acid/base treatment to carbon blacks on preparation of carbon-supported platinum nanoclusters. Electrochim. Acta. 2007, 52, 3013-21.

42. Luo, F.; Liao, S.; Chen, D. Platinum catalysts supported on Nafion functionalized carbon black for fuel cell application. J. Energy. Chem. 2013, 22, 87-92.

43. Sun, X.; Zhang, Y.; Song, P.; et al. Fluorine-doped carbon blacks: highly efficient metal-free electrocatalysts for oxygen reduction reaction. ACS. Catal. 2013, 3, 1726-9.

44. Kim, J. H.; Cheon, J. Y.; Shin, T. J.; Park, J. Y.; Joo, S. H. Effect of surface oxygen functionalization of carbon support on the activity and durability of Pt/C catalysts for the oxygen reduction reaction. Carbon 2016, 101, 449-57.

45. Che, G.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998, 393, 346-9.

46. Tang, H.; Chen, J.; Huang, Z.; et al. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon 2004, 42, 191-7.

47. Wen, Z.; Wang, Q.; Li, J. Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts. Adv. Funct. Mater. 2008, 18, 959-64.

48. Liu, C.; Wang, C. C.; Kei, C. C.; Hsueh, Y. C.; Perng, T. P. Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton-exchange membrane fuel cells. Small 2009, 5, 1535-8.

49. Wang, X.; Li, W.; Chen, Z.; Waje, M.; Yan, Y. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J. Power. Sources. 2006, 158, 154-9.

50. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.

51. Yoo, E.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano. Lett. 2009, 9, 2255-9.

52. Sebastián, D.; Ruíz, A. G.; Suelves, I.; et al. Enhanced oxygen reduction activity and durability of Pt catalysts supported on carbon nanofibers. Appl. Catal. B. Environ. 2012, 115-6, 269-75.

53. Joo, S. H.; Choi, S. J.; Oh, I.; et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412, 169-72.

54. Chen, X.; He, J.; Dang, W.; et al. Synthesis and electrocatalytic performance of ordered mesoporous carbons produced by a hard templating method using phenolic resol as carbon precursor. Carbon 2009, 47, 354.

55. Song, S.; Liang, Y.; Li, Z.; et al. Effect of pore morphology of mesoporous carbons on the electrocatalytic activity of Pt nanoparticles for fuel cell reactions. Appl. Catal. B. Environ. 2010, 98, 132-7.

56. Orfanidi, A.; Daletou, M.; Neophytides, S. Preparation and characterization of Pt on modified multi-wall carbon nanotubes to be used as electrocatalysts for high temperature fuel cell applications. Appl. Catal. B. Environ. 2011, 106, 379-89.

57. Kou, R.; Shao, Y.; Wang, D.; et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 2009, 11, 954-7.

58. Czerw, R.; Terrones, M.; Charlier, J.; et al. Identification of electron donor states in N-doped carbon nanotubes. Nano. Lett. 2001, 1, 457-60.

59. Maiyalagan, T.; Viswanathan, B. Template synthesis and characterization of well-aligned nitrogen containing carbon nanotubes. Mater. Chem. Phys. 2005, 93, 291-5.

60. Balgis, R.; Anilkumar, G. M.; Sago, S.; Ogi, T.; Okuyama, K. Ultrahigh oxygen reduction activity of Pt/nitrogen-doped porous carbon microspheres prepared via spray-drying. J. Power. Sources. 2013, 229, 58-64.

61. Zhang, S.; Chen, S. Enhanced-electrocatalytic activity of Pt nanoparticles supported on nitrogen-doped carbon for the oxygen reduction reaction. J. Power. Sources. 2013, 240, 60-5.

62. Melke, J.; Peter, B.; Habereder, A.; et al. Metal-support interactions of platinum nanoparticles decorated N-doped carbon nanofibers for the oxygen reduction reaction. ACS. Appl. Mater. Interfaces. 2016, 8, 82-90.

63. Ma, J.; Habrioux, A.; Luo, Y.; et al. Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: effect on the oxygen reduction reaction. J. Mater. Chem. A. 2015, 3, 11891-904.

64. Galeano, C.; Meier, J. C.; Soorholtz, M.; et al. Nitrogen-doped hollow carbon spheres as a support for platinum-based electrocatalysts. ACS. Catal. 2014, 4, 3856-68.

65. Zhang, L.; Yang, X.; Cai, R.; et al. Air cathode of zinc-air batteries: a highly efficient and durable aerogel catalyst for oxygen reduction. Nanoscale 2019, 11, 826-32.

66. Odedairo, T.; Yan, X.; Ma, J.; et al. Nanosheets Co3O4 interleaved with graphene for highly efficient oxygen reduction. ACS. Appl. Mater. Interfaces. 2015, 7, 21373-80.

67. Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212-3.

68. Gisselbrecht, J. P.; Gross, M.; Koecher, M.; Lausmann, M.; Vogel, E. Redox properties of porphycenes and metalloporphycenes as compared with porphyrins. J. Am. Chem. Soc. 1990, 112, 8618-20.

69. Li, W.; Yu, A.; Higgins, D. C.; Llanos, B. G.; Chen, Z. Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Am. Chem. Soc. 2010, 132, 17056-8.

70. Baran, J. D.; Grönbeck, H.; Hellman, A. Analysis of porphyrines as catalysts for electrochemical reduction of O2 and oxidation of H2O. J. Am. Chem. Soc. 2014, 136, 1320-6.

71. Kadish, K. M.; Frémond, L.; Ou, Z.; et al. Cobalt(III) corroles as electrocatalysts for the reduction of dioxygen: reactivity of a monocorrole, biscorroles, and porphyrin-corrole dyads. J. Am. Chem. Soc. 2005, 127, 5625-31.

72. Nguyen-Thanh, D.; Frenkel, A. I.; Wang, J.; O’brien, S.; Akins, D. L. Cobalt–polypyrrole–carbon black (Co–PPY–CB) electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells: composition and kinetic activity. Appl. Catal. B. Environ. 2011, 105, 50-60.

73. Morozan, A.; Campidelli, S.; Filoramo, A.; Jousselme, B.; Palacin, S. Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction. Carbon 2011, 49, 4839-47.

74. Tang, H.; Yin, H.; Wang, J.; Yang, N.; Wang, D.; Tang, Z. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 2013, 52, 5585-9.

75. Lefèvre, M.; Dodelet, J. P.; Bertrand, P. Molecular oxygen reduction in PEM fuel cells:  evidence for the simultaneous presence of two active sites in Fe-based catalysts. J. Phys. Chem. B. 2002, 106, 8705-13.

76. Lefèvre, M.; Dodelet, J. P.; Bertrand, P. Molecular oxygen reduction in PEM fuel cell conditions: ToF-SIMS analysis of co-based electrocatalysts. J. Phys. Chem. B. 2005, 109, 16718-24.

77. Faubert, G.; Lalande, G.; Côté, R.; et al. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochim. Acta. 1996, 41, 1689-701.

78. Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760-4.

79. Tang, Y.; Allen, B. L.; Kauffman, D. R.; Star, A. Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J. Am. Chem. Soc. 2009, 131, 13200-1.

80. Sharifi, T.; Hu, G.; Jia, X.; Wågberg, T. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS. Nano. 2012, 6, 8904-12.

81. Chen, S.; Bi, J.; Zhao, Y.; et al. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 5593-7.

82. Zhao, X.; Zhao, H.; Zhang, T.; et al. One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A. 2014, 2, 11666-71.

83. Chen, P.; Wang, L.; Wang, G.; et al. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy. Environ. Sci. 2014, 7, 4095-103.

84. Yang, L.; Shui, J.; Du, L.; et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv. Mater. 2019, 31, e1804799.

85. Gupta, S.; Tryk, D.; Bae, I.; Aldred, W.; Yeager, E. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J. Appl. Electrochem. 1989, 19, 19-27.

86. Zhang, G.; Lu, W.; Cao, F.; Xiao, Z.; Zheng, X. N-doped graphene coupled with Co nanoparticles as an efficient electrocatalyst for oxygen reduction in alkaline media. J. Power. Sources. 2016, 302, 114-25.

87. Hou, Y.; Cui, S.; Wen, Z.; Guo, X.; Feng, X.; Chen, J. Strongly coupled 3D hybrids of N-doped porous carbon nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced electrocatalysis. Small 2015, 11, 5940-8.

88. Wang, H. F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414-48.

89. Meng, J.; Niu, C.; Xu, L.; et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 8212-21.

90. Xie, X.; Peng, L.; Yang, H.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, e2101038.

91. Huang, Y.; Chen, Y.; Xu, M.; et al. Catalysts by pyrolysis: transforming metal-organic frameworks (MOFs) precursors into metal-nitrogen-carbon (M-N-C) materials. Mater. Today. 2023, 69, 66-78.

92. Gao, L.; Xiao, M.; Jin, Z.; et al. Correlating Fe source with Fe-N-C active site construction: guidance for rational design of high-performance ORR catalyst. J. Energy. Chem. 2018, 27, 1668-73.

93. Wang, X. X.; Cullen, D. A.; Pan, Y. T.; et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

94. Wu, J.; Zhou, H.; Li, Q.; et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy. Mater. 2019, 9, 1900149.

95. Choi, C. H.; Park, S. H.; Woo, S. I. N-doped carbon prepared by pyrolysis of dicyandiamide with various MeCl2·xH2O (Me = Co, Fe, and Ni) composites: effect of type and amount of metal seed on oxygen reduction reactions. Appl. Catal. B. Environ. 2012, 119-20, 123-31.

96. Zitolo, A.; Goellner, V.; Armel, V.; et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937-42.

97. Peng, H.; Liu, F.; Liu, X.; et al. Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. ACS. Catal. 2014, 4, 3797-805.

98. Ye, C.; Xu, L. Recent advances in the design of a high performance metal–nitrogen–carbon catalyst for the oxygen reduction reaction. J. Mater. Chem. A. 2021, 9, 22218-47.

99. Zhu, P.; Xiong, X.; Wang, X.; et al. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano. Lett. 2022, 22, 9507-15.

100. Wang, B.; Tang, J.; Zhang, X.; et al. Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries. Chem. Eng. J. 2022, 437, 135295.

101. Zhai, W.; He, Y.; Duan, Y.; et al. Densely populated trimetallic single-atoms for durable low-temperature flexible zinc-air batteries. Appl. Catal. B. Environ. 2024, 342, 123438.

102. Wan, X.; Liu, Q.; Liu, J.; et al. Iron atom-cluster interactions increase activity and improve durability in Fe-N-C fuel cells. Nat. Commun. 2022, 13, 2963.

103. Li, Y.; Liu, X.; Zheng, L.; et al. Preparation of Fe–N–C catalysts with FeNx (x = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. J. Mater. Chem. A. 2019, 7, 26147-53.

104. Xue, D.; Yuan, P.; Jiang, S.; et al. Altering the spin state of Fe-N-C through ligand field modulation of single-atom sites boosts the oxygen reduction reaction. Nano. Energy. 2023, 105, 108020.

105. Zhang, N.; Zhou, T.; Ge, J.; et al. High-density planar-like Fe2N6 structure catalyzes efficient oxygen reduction. Matter 2020, 3, 509-21.

106. Zhang, L.; Jin, N.; Yang, Y.; et al. Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nanomicro. Lett. 2023, 15, 228.

107. Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 2014, 114, 3919-62.

108. Gong, L.; Zhang, H.; Wang, Y.; et al. Bridge bonded oxygen ligands between approximated FeN4 sites confer catalysts with high ORR performance. Angew. Chem. Int. Ed. Engl. 2020, 59, 13923-8.

109. Zhao, K.; Liu, S.; Li, Y.; et al. Insight into the mechanism of axial ligands regulating the catalytic activity of Fe–N4 sites for oxygen reduction reaction. Adv. Energy. Mater. 2022, 12, 2103588.

110. Sabhapathy, P.; Raghunath, P.; Sabbah, A.; et al. Axial chlorine induced electron delocalization in atomically dispersed FeN4 electrocatalyst for oxygen reduction reaction with improved hydrogen peroxide tolerance. Small 2023, 19, e2303598.

111. Zhang, J.; Zhao, Y.; Chen, C.; et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118-26.

112. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71-4.

113. Xu, X.; Zhang, X.; Kuang, Z.; et al. Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: the influence of structure and structural evolution of active site. Appl. Catal. B. Environ. 2022, 309, 121290.

114. Liu, K.; Wu, G.; Wang, G. Role of local carbon structure surrounding FeN4 sites in boosting the catalytic activity for oxygen reduction. J. Phys. Chem. C. 2017, 121, 11319-24.

115. Liu, K.; Fu, J.; Lin, Y.; et al. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.

116. Wang, X.; Jia, Y.; Mao, X.; et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv. Mater. 2020, 32, e2000966.

117. Yin, H.; Yuan, P.; Lu, B.; et al. Phosphorus-driven electron delocalization on edge-type FeN4 active sites for oxygen reduction in acid medium. ACS. Catal. 2021, 11, 12754-62.

118. Tian, Y.; Li, M.; Wu, Z.; et al. Edge-hosted atomic Co-N4 sites on hierarchical porous carbon for highly selective two-electron oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 2022, 61, e202213296.

119. Liu, Y.; Zou, K.; Zhang, T.; et al. Novel honeycomb-like carbons with tunable nanopores as metal-free N, O-codoped catalysts for robust oxygen reduction. Chem. Eng. J. 2022, 433, 133560.

120. Ren, G.; Chen, S.; Zhang, J.; et al. N-doped porous carbon spheres as metal-free electrocatalyst for oxygen reduction reaction. J. Mater. Chem. A. 2021, 9, 5751-8.

121. Li, W.; Wang, J.; Jia, C.; Chen, J.; Wen, Z.; Huang, A. Covalent organic framework-derived fluorine, nitrogen dual-doped carbon as metal-free bifunctional oxygen electrocatalysts. J. Colloid. Interface. Sci. 2023, 650, 275-83.

122. Zheng, Y.; Song, H.; Chen, S.; et al. Metal-free multi-heteroatom-doped carbon bifunctional electrocatalysts derived from a covalent triazine polymer. Small 2020, 16, e2004342.

123. Li, J.; Shen, C.; Luo, J.; Pan, T.; Deng, J.; Cao, Z. Metal-organic framework-derived brain platygyra coral-like porous carbon architectures for real-time monitoring of hydrogen peroxide in biological matrices. Chem. Eng. J. 2023, 471, 144805.

124. Kanagavalli, P.; Pandey, G. R.; Bhat, V. S.; Veerapandian, M.; Hegde, G. Nitrogenated-carbon nanoelectrocatalyst advertently processed from bio-waste of Allium sativum for oxygen reduction reaction. J. Nanostruct. Chem. 2021, 11, 343-52.

125. Li, M.; Liu, Z.; Wang, F.; Xuan, J. The influence of the type of N dopping on the performance of bifunctional N-doped ordered mesoporous carbon electrocatalysts in oxygen reduction and evolution reaction. J. Energy. Chem. 2017, 26, 422-7.

126. Kim, J.; Park, J.; Lee, J.; Lim, W.; Jo, C.; Lee, J. Biomass-Derived P, N self-doped hard carbon as bifunctional oxygen electrocatalyst and anode material for seawater batteries. Adv. Funct. Mater. 2021, 31, 2010882.

127. Li, X.; Guan, B. Y.; Gao, S.; Lou, X. W. A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. Energy. Environ. Sci. 2019, 12, 648-55.

128. Kumar, S.; Gonen, S.; Friedman, A.; Elbaz, L.; Nessim, G. D. Doping and reduction of graphene oxide using chitosan-derived volatile N-heterocyclic compounds for metal-free oxygen reduction reaction. Carbon 2017, 120, 419-26.

129. Song, L.; Wu, Z.; Liang, H.; et al. Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates. Nano. Energy. 2016, 19, 117-27.

130. Graglia, M.; Pampel, J.; Hantke, T.; Fellinger, T. P.; Esposito, D. Nitro lignin-derived nitrogen-doped carbon as an efficient and sustainable electrocatalyst for oxygen reduction. ACS. Nano. 2016, 10, 4364-71.

131. Huang, B.; Liu, Y.; Xie, Z. Biomass derived 2D carbons via a hydrothermal carbonization method as efficient bifunctional ORR/HER electrocatalysts. J. Mater. Chem. A. 2017, 5, 23481-8.

132. Burmeister, C. F.; Kwade, A. Process engineering with planetary ball mills. Chem. Soc. Rev. 2013, 42, 7660-7.

133. Shen, X.; Zhou, Q.; Han, M.; et al. Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nat. Commun. 2021, 12, 2848.

134. Yuan, R.; Dong, Y.; Hou, R.; et al. Structural transformation of porous and disordered carbon during ball-milling. Chem. Eng. J. 2023, 454, 140418.

135. Morawa Eblagon, K.; Rey-Raap, N.; Figueiredo, J. L.; Pereira, M. F. R. Relationships between texture, surface chemistry and performance of N-doped carbon xerogels in the oxygen reduction reaction. Appl. Surf. Sci. 2021, 548, 149242.

136. Yang, N.; Zhu, X.; Wang, G.; et al. Pyrolysis-free mechanochemical conversion of small organic molecules into metal-free heteroatom-doped mesoporous carbons for efficient electrosynthesis of hydrogen peroxide. ACS. Mater. Lett. 2023, 5, 379-87.

137. Wang, Y.; Yu, F.; Zhu, M.; et al. N-Doping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for the oxygen reduction reaction. J. Mater. Chem. A. 2018, 6, 2011-7.

138. Li, O. L.; Prabakar, K.; Kaneko, A.; Park, H.; Ishizaki, T. Exploration of Lewis basicity and oxygen reduction reaction activity in plasma-tailored nitrogen-doped carbon electrocatalysts. Catal. Today. 2019, 337, 102-9.

139. Niu, J.; Chokradjaroen, C.; Saito, N. Graphitic N-doped graphene via solution plasma with a single dielectric barrier. Carbon 2022, 199, 347-56.

140. Khan, A.; Goepel, M.; Colmenares, J. C.; Gläser, R. Chitosan-based N-doped carbon materials for electrocatalytic and photocatalytic applications. ACS. Sustain. Chem. Eng. 2020, 8, 4708-27.

141. Lai, L.; Potts, J. R.; Zhan, D.; et al. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy. Environ. Sci. 2012, 5, 7936.

142. Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361-5.

143. Wang, N.; Lu, B.; Li, L.; et al. Graphitic nitrogen is responsible for oxygen electroreduction on nitrogen-doped carbons in alkaline electrolytes: insights from activity attenuation studies and theoretical calculations. ACS. Catal. 2018, 8, 6827-36.

144. Zhao, Y.; Wan, J.; Yao, H.; et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924-31.

145. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394-403.

146. Choi, C. H.; Park, S. H.; Woo, S. I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS. Nano. 2012, 6, 7084-91.

147. Chao, G.; Zhang, L.; Wang, D.; et al. Activation of graphitic nitrogen sites for boosting oxygen reduction. Carbon 2020, 159, 611-6.

148. Wu, K.; Wang, D.; Zeng, Q.; Li, Y.; Gentle, I. R. Solution phase synthesis of halogenated graphene and the electrocatalytic activity for oxygen reduction reaction. Chin. J. Catal. 2014, 35, 884-90.

149. Gong, T.; Qi, R.; Liu, X.; Li, H.; Zhang, Y. N, F-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR. Nanomicro. Lett. 2019, 11, 9.

150. Xiang, F.; Zhao, X.; Yang, J.; et al. Enhanced selectivity in the electroproduction of H2O2 via F/S dual-doping in metal-free nanofibers. Adv. Mater. 2023, 35, e2208533.

151. Li, Y.; Zhang, H.; Wang, Y.; et al. A self-sponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts. Energy. Environ. Sci. 2014, 7, 3720-6.

152. Liu, J.; Song, P.; Ruan, M.; Xu, W. Catalytic properties of graphitic and pyridinic nitrogen doped on carbon black for oxygen reduction reaction. Chin. J. Catal. 2016, 37, 1119-26.

153. Li, L.; Tang, C.; Zheng, Y.; et al. Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon. Adv. Energy. Mater. 2020, 10, 2000789.

154. Iglesias, D.; Giuliani, A.; Melchionna, M.; et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 2018, 4, 106-23.

155. Zhang, T.; Wang, H.; Zhang, J.; et al. Carbon charge population and oxygen molecular transport regulated by program-doping for highly efficient 4e-ORR. Chem. Eng. J. 2022, 444, 136560.

156. Cheng, J.; Lyu, C.; Li, H.; et al. Steering the oxygen reduction reaction pathways of N-carbon hollow spheres by heteroatom doping. Appl. Catal. B. Environ. 2023, 327, 122470.

157. Chen, S.; Luo, T.; Chen, K.; et al. Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew. Chem. Int. Ed. Engl. 2021, 60, 16607-14.

158. Koh, K. H.; Kim, Y. J.; Mostaghim, A. H. B.; Siahrostami, S.; Han, T. H.; Chen, Z. Elaborating nitrogen and oxygen dopants configurations within graphene electrocatalysts for two-electron oxygen reduction. ACS. Mater. Lett. 2022, 4, 320-8.

159. Zhao, H.; Sun, C.; Jin, Z.; et al. Carbon for the oxygen reduction reaction: a defect mechanism. J. Mater. Chem. A. 2015, 3, 11736-9.

160. Zhao, X.; Zou, X.; Yan, X.; et al. Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping. Inorg. Chem. Front. 2016, 3, 417-21.

161. Tao, L.; Qiao, M.; Jin, R.; et al. Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst. Angew. Chem. Int. Ed. Engl. 2019, 58, 1019-24.

162. Jia, Y.; Zhang, L.; Zhuang, L.; et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2019, 2, 688-95.

163. Wang, X.; Jia, Y.; Mao, X.; et al. A directional synthesis for topological defect in carbon. Chem 2020, 6, 2009-23.

164. Li, N.; Li, M.; Guo, K.; et al. Deciphering the role of native defects in dopant-mediated defect engineering of carbon electrocatalysts. Adv. Energy. Mater. 2024, 14, 2401008.

165. Wu, Q.; Jia, Y.; Liu, Q.; et al. Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem 2022, 8, 2715-33.

166. Jia, Y.; Zhang, L.; Du, A.; et al. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532-8.

167. Zhu, J.; Li, W.; Li, S.; et al. Defective N/S-codoped 3D cheese-like porous carbon nanomaterial toward efficient oxygen reduction and Zn-Air batteries. Small 2018, 14, e1800563.

168. Zhu, J.; Huang, Y.; Mei, W.; et al. Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem. Int. Ed. Engl. 2019, 58, 3859-64.

169. Tang, C.; Wang, H. F.; Chen, X.; et al. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845-51.

170. Shi, P.; Si, D.; Yao, M.; et al. Spiral effect of helical carbon nanorods boosting electrocatalysis of oxygen reduction reaction. Sci. China. Mater. 2022, 65, 1531-8.

171. Jiang, Y.; Yang, L.; Sun, T.; et al. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS. Catal. 2015, 5, 6707-12.

172. Srinivas, K.; Liu, D.; Ma, F.; et al. Defect-engineered mesoporous undoped carbon nanoribbons for benchmark oxygen reduction reaction. Small 2023, 19, e2301589.

173. Xia, H.; Pang, R.; Dong, X.; et al. Boosting oxygen reduction reaction kinetics by designing rich vacancy coupling pentagons in the defective carbon. J. Am. Chem. Soc. 2023, 145, 25695-704.

174. Wang, X.; Han, C.; Han, Y.; et al. Highly curved defect sites: how curvature effect influences metal-free defective carbon electrocatalysts. Small 2024, 20, e2401447.

175. Zhang, J.; Sun, Y.; Zhu, J.; et al. Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano. Energy. 2018, 52, 307-14.

176. Fernandez-Escamilla, H. N.; Guerrero-Sanchez, J.; Contreras, E.; et al. Understanding the selectivity of the oxygen reduction reaction at the atomistic level on nitrogen-doped graphitic carbon materials. Adv. Energy. Mater. 2021, 11, 2002459.

177. Yan, X.; Liu, H.; Jia, Y.; et al. Clarifying the origin of oxygen reduction activity in heteroatom-modified defective carbon. Cell. Rep. Phys. Sci. 2020, 1, 100083.

178. Li, D.; Jia, Y.; Chang, G.; et al. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 2018, 4, 2345-56.

179. Wu, Q.; Zou, H.; Mao, X.; et al. Unveiling the dynamic active site of defective carbon-based electrocatalysts for hydrogen peroxide production. Nat. Commun. 2023, 14, 6275.

180. Song, H.; Wu, M.; Tang, Z.; Tse, J. S.; Yang, B.; Lu, S. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem. Int. Ed. Engl. 2021, 60, 7234-44.

181. Lv, Y.; Wu, X.; Lin, H.; et al. A novel carbon support: few-layered graphdiyne-decorated carbon nanotubes capture metal clusters as effective metal-supported catalysts. Small 2021, 17, e2006442.

182. Li, D.; Cheng, H.; Hao, X.; et al. Wood-derived freestanding carbon-based electrode with hierarchical structure for industrial-level hydrogen production. Adv. Mater. 2024, 36, e2304917.

183. Liu, W.; Ji, J.; Yan, X.; et al. A cascade surface immobilization strategy to access high-density and closely distanced atomic Pt sites for enhancing alkaline hydrogen evolution reaction. J. Mater. Chem. A. 2020, 8, 5255-62.

184. Yang, Q.; Liu, H.; Yuan, P.; et al. Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 2022, 144, 2171-8.

185. Li, T.; Ren, S.; Zhang, C.; et al. Cobalt single atom anchored on N-doped carbon nanoboxes as typical single-atom catalysts (SACs) for boosting the overall water splitting. Chem. Eng. J. 2023, 458, 141435.

186. Liu, X.; Deng, Y.; Zheng, L.; Kesama, M. R.; Tang, C.; Zhu, Y. Engineering low-coordination single-atom cobalt on graphitic carbon nitride catalyst for hydrogen evolution. ACS. Catal. 2022, 12, 5517-26.

187. Zhang, L.; Jia, Y.; Liu, H.; et al. Charge polarization from atomic metals on adjacent graphitic layers for enhancing the hydrogen evolution reaction. Angew. Chem. Int. Ed. Engl. 2019, 58, 9404-8.

188. Zhang, Y.; Yun, S.; Dang, J.; et al. Defect engineering via ternary nonmetal doping boosts the catalytic activity of ZIF-derived carbon-based metal-free catalysts for photovoltaics and water splitting. Mater. Today. Phys. 2022, 27, 100785.

189. Lu, S.; Cheng, C.; Shi, Y.; Wu, Y.; Zhang, Z.; Zhang, B. Unveiling the structural transformation and activity origin of heteroatom-doped carbons for hydrogen evolution. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2300549120.

190. Zhang, K.; Zou, R. Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges. Small 2021, 17, e2100129.

191. Fan, X.; Pang, Q.; Yi, S.; et al. Intrinsic-structural-modulated carbon cloth as efficient electrocatalyst for water oxidation. Appl. Catal. B. Environ. 2021, 292, 120152.

192. Zhang, J.; Zhao, Z.; Xia, Z.; Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444-52.

193. Lu, S.; Shi, Y.; Zhou, W.; Zhang, Z.; Wu, F.; Zhang, B. Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 2022, 144, 3250-8.

194. Qiang, F.; Feng, J.; Wang, H.; et al. Oxygen engineering enables N-doped porous carbon nanofibers as oxygen reduction/evolution reaction electrocatalysts for flexible zinc–air batteries. ACS. Catal. 2022, 12, 4002-15.

195. Zhang, L.; Jia, Y.; Gao, G.; et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 2018, 4, 285-97.

196. Kumar, P.; Kannimuthu, K.; Zeraati, A. S.; et al. High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 8052-63.

197. Lei, X.; Tang, Q.; Zheng, Y.; et al. High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nat. Sustain. 2023, 6, 816-26.

198. Bai, X.; Zhang, X.; Sun, Y.; et al. Low ruthenium content confined on boron carbon nitride as an efficient and stable electrocatalyst for acidic oxygen evolution reaction. Angew. Chem. Int. Ed. Engl. 2023, 62, e202308704.

199. Lu, S.; Zhou, W.; Shi, Y.; Liu, C.; Yu, Y.; Zhang, B. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem 2022, 8, 1415-26.

200. Xie, L.; Liang, C.; Wu, Y.; et al. Isomerization engineering of oxygen-enriched carbon quantum dots for efficient electrochemical hydrogen peroxide production. Small 2024, 20, e2401253.

201. Zhang, C.; Shen, W.; Guo, K.; Xiong, M.; Zhang, J.; Lu, X. A pentagonal defect-rich metal-free carbon electrocatalyst for boosting acidic O2 reduction to H2O2 production. J. Am. Chem. Soc. 2023, 145, 11589-98.

202. Zhu, D.; Wu, H. W.; Fong, W. K.; Tabor, R. F.; Zhang, J. The ratio of sp2 and sp3 hybridized carbon determines the performance of carbon-based catalysts in H2O2 electrosynthesis from O2. Angew. Chem. Int. Ed. Engl. 2025, 64, e202500145.

203. Wang, H.; Chen, K.; Lu, Z.; et al. Nonmetallic high-entropy-engineered nanocarbons for advanced ORR electrocatalysis. Angew. Chem. Int. Ed. Engl. 2025, 64, e202501290.

204. Lu, X.; Yao, Z. C.; Ma, X.; et al. Multiple secondary bond-mediated C-N coupling over N-doped carbon electrocatalysts. J. Am. Chem. Soc. 2025, 147, 19342-52.

205. Luo, X.; Wei, W.; Xu, Y.; et al. Neighboring carbon defects enhanced molecular oxygen activation of cobalt single atom catalysts toward efficient aerobic alcohols oxidation. Angew. Chem. Int. Ed. Engl. 2025, 64, e202502430.

206. Zhang, Y.; Yu, C.; Song, X.; et al. Defect-enabled local high-temperature field within carbon to promote in-plane integration of an electrocatalyst for CO2-to-CO conversion. Energy. Environ. Sci. 2025, 18, 1331-42.

207. Huang, Z.; Yao, Y.; Pang, Z.; et al. Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports. Nat. Commun. 2020, 11, 6373.

208. Ma, R.; Chen, Y.; Zhang, B.; et al. Defect-repair in carbon for fast and stable potassium and sodium storage. Chem. Eng. J. 2025, 512, 162509.

209. Chen, B.; Fan, D.; Pinto, R. V.; et al. A Scalable Robust Microporous Al-MOF for post-combustion carbon capture. Adv. Sci. 2024, 11, e2401070.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/