REFERENCES

1. Marks, T.; Ernst, R. Scandium, yttrium and the lanthanides and actinides. In: Comprehensive Organometallic Chemistry I. Amsterdam: Elsevier Inc;1982. p. 173-270.

2. Wei, B.; Bai, Y.; Chen, R.; Yu, G. Samarium and ytterbium reagents for carbonyl conversions. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier; 2024.

3. Girard, P.; Namy, J. L.; Kagan, H. B. Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of samarium iodide and ytterbium iodide and their use as reducing or coupling agents. J. Am. Chem. Soc. 1980, 102, 2693-8.

4. Edmonds, D. J.; Johnston, D.; Procter, D. J. Samarium(II)-iodide-mediated cyclizations in natural product synthesis. Chem. Rev. 2004, 104, 3371-404.

5. Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. Cross-coupling reactions using samarium(II) iodide. Chem. Rev. 2014, 114, 5959-6039.

6. Heravi, M. M.; Nazari, A. Samarium(II) iodide-mediated reactions applied to natural product total synthesis. RSC. Adv. 2022, 12, 9944-94.

7. Gao, Y.; Ma, D. Samarium iodide-mediated C-C bond formation in the total synthesis of natural products. Nat. Synth. 2022, 1, 275-88.

8. Liu, C.; Qi, Y.; Liu, Y. Recent development of samarium diiodide and other samarium reagents in organic transformation. Chin. J. Org. Chem. 2021, 41, 2202.

9. Maity, S. Development in SmI2 catalyzed reactions. Eur. J. Org. Chem. 2021, 2021, 5312-9.

10. Nomura, R.; Matsuno, T.; Endo, T. Samarium iodide-catalyzed pinacol coupling of carbonyl compounds. J. Am. Chem. Soc. 1996, 118, 11666-7.

11. Aspinall, H. C.; Greeves, N.; Valla, C. Samarium diiodide-catalyzed diastereoselective pinacol couplings. Org. Lett. 2005, 7, 1919-22.

12. Maity, S.; Flowers, R. A. 2nd. Mechanistic Study and development of catalytic reactions of Sm(II). J. Am. Chem. Soc. 2019, 141, 3207-16.

13. Orsini, F.; Lucci, E. M. Reformatsky reactions with SmI2 in catalytic amount. Tetrahedron. Lett. 2005, 46, 1909-11.

14. Corey, E.; Zheng, G. Z. Catalytic reactions of samarium (II) iodide. Tetrahedron. Lett. 1997, 38, 2045-8.

15. Hélion, F.; Namy, J. L. Mischmetall: an efficient and low cost coreductant for catalytic reactions of samarium diiodide. J. Org. Chem. 1999, 64, 2944-6.

16. Lannou, M.; Hélion, F.; Namy, J. L. Some uses of mischmetall in organic synthesis. Tetrahedron 2003, 59, 10551-65.

17. Evans, D. A.; Hoveyda, A. H. Samarium-catalyzed intramolecular Tishchenko reduction of .beta.-hydroxy ketones. a stereoselective approach to the synthesis of differentiated anti 1,3-diol monoesters. J. Am. Chem. Soc. 1990, 112, 6447-9.

18. Zhou, Z.; Xu, F.; Han, X.; Zhou, J.; Shen, Q. Stereoselective Synthesis of Pyrano[3,2-c]- and Furano[3,2-c]quinolines: samarium diiodide-catalyzed one-pot Aza-Diels-Alder reactions. Eur. J. Org. Chem. 2007, 2007, 5265-9.

19. Röckl, J. L.; Lundberg, H. Samarium and ytterbium in organic electrosynthesis. Synthesis 2023, 55, 1375-84.

20. Ware, S. D.; Zhang, W.; Charboneau, D. J.; Klein, C. K.; Reisman, S. E.; See, K. A. Electrochemical preparation of Sm(II) reagent facilitated by weakly coordinating anions. Chemistry 2023, 29, e202301045.

21. Léonard, E.; Duñach, E.; Périchon, J. First samarium-catalysed coupling of aldehydes and ketones. J. Chem. Soc,. Chem. Commun. 1989, 0, 276-7.

22. Hébri, H.; Duñach, E.; Heintz, M.; Troupel, M.; Périchon, J. Samarium-catalyzed electrosynthesis of 1,2-diketones by the direct reductive dimerization of aromatic esters: a novel coupling reaction. Synlett 1991, 1991, 901-2.

23. Hebri, H.; Duñach, E.; Périchon, J. Samarium-catalyzed electrochemical reduction of organic halides. Synth Commun 1991, 21, 2377-82.

24. Espanet, B.; Duñach, E.; Périchon, J. SmCl3-catalyzed electrochemical cleavage of allyl ethers. Tetrahedron. Lett. 1992, 33, 2485-8.

25. Hebri, H.; Duñach, E.; Périchon, J. SmCl3 -catalysed electrosynthesis of γ-butyrolactones from 3-chloroesters and carbonyl compounds. J. Chem. Soc,. Chem. Commun. , 1993, 499-500.

26. Sahloul, K.; Sun, L.; Requet, A.; Chahine, Y.; Mellah, M. A samarium “soluble” anode: a new source of SmI2 reagent for electrosynthetic application. Chemistry 2012, 18, 11205-9.

27. Sun, L.; Sahloul, K.; Mellah, M. Use of electrochemistry to provide efficient SmI2 catalytic system for coupling reactions. ACS. Catal. 2013, 3, 2568-73.

28. Zhang, Y.; Mellah, M. Convenient electrocatalytic synthesis of azobenzenes from nitroaromatic derivatives using SmI2. ACS. Catal. 2017, 7, 8480-6.

29. Bazzi, S.; Le, Duc. G.; Schulz, E.; Gosmini, C.; Mellah, M. CO2 activation by electrogenerated divalent samarium for aryl halide carboxylation. Org. Biomol. Chem. 2019, 17, 8546-50.

30. Bazzi, S.; Schulz, E.; Mellah, M. Electrogenerated Sm(II)-catalyzed CO2 activation for carboxylation of benzyl halides. Org. Lett. 2019, 21, 10033-7.

31. Zhang, Y.; Mellah, M. Samarium(II)-electrocatalyzed chemoselective reductive alkoxylation of phthalimides. Org. Chem. Front. 2022, 9, 1308-14.

32. Huang, H.; Mcdouall, J. J. W.; Procter, D. J. SmI2-catalysed cyclization cascades by radical relay. Nat. Catal. 2019, 2, 211-8.

33. Agasti, S.; Beattie, N. A.; McDouall, J. J. W.; Procter, D. J. SmI2-catalyzed intermolecular coupling of cyclopropyl ketones and alkynes: a link between ketone conformation and reactivity. J. Am. Chem. Soc. 2021, 143, 3655-61.

34. Agasti, S.; Beltran, F.; Pye, E.; Kaltsoyannis, N.; Crisenza, G. E. M.; Procter, D. J. A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres. Nat. Chem. 2023, 15, 535-41.

35. Mansell, J. I.; Yu, S.; Li, M.; et al. Alkyl Cyclopropyl ketones in catalytic formal [3 + 2] cycloadditions: the role of SmI2 catalyst stabilization. J. Am. Chem. Soc. 2024, 146, 12799-807.

36. Huang, H. M.; Garduño-Castro, M. H.; Morrill, C.; Procter, D. J. Catalytic cascade reactions by radical relay. Chem. Soc. Rev. 2019, 48, 4626-38.

37. Romano, C.; Mansell, J. I.; Procter, D. J. A blueprint for catalysis. Nat. Chem. 2024, 16, 478.

38. Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 2022, 122, 1485-542.

39. Meyer, A. U.; Slanina, T.; Heckel, A.; König, B. Lanthanide ions coupled with photoinduced electron transfer generate strong reduction potentials from visible light. Chemistry 2017, 23, 7900-4.

40. Jenks, T. C.; Bailey, M. D.; Hovey, J. L.; et al. First use of a divalent lanthanide for visible-light-promoted photoredox catalysis. Chem. Sci. 2018, 9, 1273-8.

41. Tomar, M.; Bhimpuria, R.; Kocsi, D.; Thapper, A.; Borbas, K. E. Photocatalytic generation of divalent lanthanide reducing agents. J. Am. Chem. Soc. 2023, 145, 22555-62.

42. Kuribara, T.; Kaneki, A.; Matsuda, Y.; Nemoto, T. Visible-light-antenna ligand-enabled samarium-catalyzed reductive transformations. J. Am. Chem. Soc. 2024, 146, 20904-12.

43. Tomar, M.; Bosch, C.; Everaert, J.; et al. Photocatalyst for visible-light-driven Sm(II)-mediated reductions. Org. Lett. 2024, 26, 10752-6.

44. Bhimpuria, R.; Tomar, M.; Thapper, A.; Ahlquist, M.; Borbas, K. E. Photocatalytic product-selective reduction of CO2, CO, and carbonates. Chem , 2025, 102450.

45. Bhimpuria, R.; Charaf, R.; Ye, K.; et al. A Sm(II)-based catalyst for the reduction of dinitrogen, nitrite, and nitrate to ammonia or urea. Chem 2025, 11, 102547.

46. Johansen, C. M.; Boyd, E. A.; Tarnopol, D. E.; Peters, J. C. Photodriven Sm(III)-to-Sm(II) reduction for catalytic applications. J. Am. Chem. Soc. 2024, 146, 25456-61.

47. Boyd, E. A.; Shin, C.; Peters, J. C.; et al. Reductive samarium (electro)catalysis enabled by SmIII-alkoxide protonolysis. Science 2024, 385, 847.

48. Boyd, E. A.; Jung, H.; Peters, J. C. Samarium as a catalytic electron-transfer mediator in electrocatalytic nitrogen reduction to ammonia. J. Am. Chem. Soc. 2025, 147, 4695-700.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/