REFERENCES
1. Marks, T.; Ernst, R. Scandium, yttrium and the lanthanides and actinides. In: Comprehensive Organometallic Chemistry I. Amsterdam: Elsevier Inc;1982. p. 173-270.
2. Wei, B.; Bai, Y.; Chen, R.; Yu, G. Samarium and ytterbium reagents for carbonyl conversions. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier; 2024.
3. Girard, P.; Namy, J. L.; Kagan, H. B. Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of samarium iodide and ytterbium iodide and their use as reducing or coupling agents. J. Am. Chem. Soc. 1980, 102, 2693-8.
4. Edmonds, D. J.; Johnston, D.; Procter, D. J. Samarium(II)-iodide-mediated cyclizations in natural product synthesis. Chem. Rev. 2004, 104, 3371-404.
5. Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. Cross-coupling reactions using samarium(II) iodide. Chem. Rev. 2014, 114, 5959-6039.
6. Heravi, M. M.; Nazari, A. Samarium(II) iodide-mediated reactions applied to natural product total synthesis. RSC. Adv. 2022, 12, 9944-94.
7. Gao, Y.; Ma, D. Samarium iodide-mediated C-C bond formation in the total synthesis of natural products. Nat. Synth. 2022, 1, 275-88.
8. Liu, C.; Qi, Y.; Liu, Y. Recent development of samarium diiodide and other samarium reagents in organic transformation. Chin. J. Org. Chem. 2021, 41, 2202.
10. Nomura, R.; Matsuno, T.; Endo, T. Samarium iodide-catalyzed pinacol coupling of carbonyl compounds. J. Am. Chem. Soc. 1996, 118, 11666-7.
11. Aspinall, H. C.; Greeves, N.; Valla, C. Samarium diiodide-catalyzed diastereoselective pinacol couplings. Org. Lett. 2005, 7, 1919-22.
12. Maity, S.; Flowers, R. A. 2nd. Mechanistic Study and development of catalytic reactions of Sm(II). J. Am. Chem. Soc. 2019, 141, 3207-16.
13. Orsini, F.; Lucci, E. M. Reformatsky reactions with SmI2 in catalytic amount. Tetrahedron. Lett. 2005, 46, 1909-11.
14. Corey, E.; Zheng, G. Z. Catalytic reactions of samarium (II) iodide. Tetrahedron. Lett. 1997, 38, 2045-8.
15. Hélion, F.; Namy, J. L. Mischmetall: an efficient and low cost coreductant for catalytic reactions of samarium diiodide. J. Org. Chem. 1999, 64, 2944-6.
16. Lannou, M.; Hélion, F.; Namy, J. L. Some uses of mischmetall in organic synthesis. Tetrahedron 2003, 59, 10551-65.
17. Evans, D. A.; Hoveyda, A. H. Samarium-catalyzed intramolecular Tishchenko reduction of .beta.-hydroxy ketones. a stereoselective approach to the synthesis of differentiated anti 1,3-diol monoesters. J. Am. Chem. Soc. 1990, 112, 6447-9.
18. Zhou, Z.; Xu, F.; Han, X.; Zhou, J.; Shen, Q. Stereoselective Synthesis of Pyrano[3,2-c]- and Furano[3,2-c]quinolines: samarium diiodide-catalyzed one-pot Aza-Diels-Alder reactions. Eur. J. Org. Chem. 2007, 2007, 5265-9.
19. Röckl, J. L.; Lundberg, H. Samarium and ytterbium in organic electrosynthesis. Synthesis 2023, 55, 1375-84.
20. Ware, S. D.; Zhang, W.; Charboneau, D. J.; Klein, C. K.; Reisman, S. E.; See, K. A. Electrochemical preparation of Sm(II) reagent facilitated by weakly coordinating anions. Chemistry 2023, 29, e202301045.
21. Léonard, E.; Duñach, E.; Périchon, J. First samarium-catalysed coupling of aldehydes and ketones. J. Chem. Soc,. Chem. Commun. 1989, 0, 276-7.
22. Hébri, H.; Duñach, E.; Heintz, M.; Troupel, M.; Périchon, J. Samarium-catalyzed electrosynthesis of 1,2-diketones by the direct reductive dimerization of aromatic esters: a novel coupling reaction. Synlett 1991, 1991, 901-2.
23. Hebri, H.; Duñach, E.; Périchon, J. Samarium-catalyzed electrochemical reduction of organic halides. Synth Commun 1991, 21, 2377-82.
24. Espanet, B.; Duñach, E.; Périchon, J. SmCl3-catalyzed electrochemical cleavage of allyl ethers. Tetrahedron. Lett. 1992, 33, 2485-8.
25. Hebri, H.; Duñach, E.; Périchon, J. SmCl3 -catalysed electrosynthesis of γ-butyrolactones from 3-chloroesters and carbonyl compounds. J. Chem. Soc,. Chem. Commun. , 1993, 499-500.
26. Sahloul, K.; Sun, L.; Requet, A.; Chahine, Y.; Mellah, M. A samarium “soluble” anode: a new source of SmI2 reagent for electrosynthetic application. Chemistry 2012, 18, 11205-9.
27. Sun, L.; Sahloul, K.; Mellah, M. Use of electrochemistry to provide efficient SmI2 catalytic system for coupling reactions. ACS. Catal. 2013, 3, 2568-73.
28. Zhang, Y.; Mellah, M. Convenient electrocatalytic synthesis of azobenzenes from nitroaromatic derivatives using SmI2. ACS. Catal. 2017, 7, 8480-6.
29. Bazzi, S.; Le, Duc. G.; Schulz, E.; Gosmini, C.; Mellah, M. CO2 activation by electrogenerated divalent samarium for aryl halide carboxylation. Org. Biomol. Chem. 2019, 17, 8546-50.
30. Bazzi, S.; Schulz, E.; Mellah, M. Electrogenerated Sm(II)-catalyzed CO2 activation for carboxylation of benzyl halides. Org. Lett. 2019, 21, 10033-7.
31. Zhang, Y.; Mellah, M. Samarium(II)-electrocatalyzed chemoselective reductive alkoxylation of phthalimides. Org. Chem. Front. 2022, 9, 1308-14.
32. Huang, H.; Mcdouall, J. J. W.; Procter, D. J. SmI2-catalysed cyclization cascades by radical relay. Nat. Catal. 2019, 2, 211-8.
33. Agasti, S.; Beattie, N. A.; McDouall, J. J. W.; Procter, D. J. SmI2-catalyzed intermolecular coupling of cyclopropyl ketones and alkynes: a link between ketone conformation and reactivity. J. Am. Chem. Soc. 2021, 143, 3655-61.
34. Agasti, S.; Beltran, F.; Pye, E.; Kaltsoyannis, N.; Crisenza, G. E. M.; Procter, D. J. A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres. Nat. Chem. 2023, 15, 535-41.
35. Mansell, J. I.; Yu, S.; Li, M.; et al. Alkyl Cyclopropyl ketones in catalytic formal [3 + 2] cycloadditions: the role of SmI2 catalyst stabilization. J. Am. Chem. Soc. 2024, 146, 12799-807.
36. Huang, H. M.; Garduño-Castro, M. H.; Morrill, C.; Procter, D. J. Catalytic cascade reactions by radical relay. Chem. Soc. Rev. 2019, 48, 4626-38.
38. Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 2022, 122, 1485-542.
39. Meyer, A. U.; Slanina, T.; Heckel, A.; König, B. Lanthanide ions coupled with photoinduced electron transfer generate strong reduction potentials from visible light. Chemistry 2017, 23, 7900-4.
40. Jenks, T. C.; Bailey, M. D.; Hovey, J. L.; et al. First use of a divalent lanthanide for visible-light-promoted photoredox catalysis. Chem. Sci. 2018, 9, 1273-8.
41. Tomar, M.; Bhimpuria, R.; Kocsi, D.; Thapper, A.; Borbas, K. E. Photocatalytic generation of divalent lanthanide reducing agents. J. Am. Chem. Soc. 2023, 145, 22555-62.
42. Kuribara, T.; Kaneki, A.; Matsuda, Y.; Nemoto, T. Visible-light-antenna ligand-enabled samarium-catalyzed reductive transformations. J. Am. Chem. Soc. 2024, 146, 20904-12.
43. Tomar, M.; Bosch, C.; Everaert, J.; et al. Photocatalyst for visible-light-driven Sm(II)-mediated reductions. Org. Lett. 2024, 26, 10752-6.
44. Bhimpuria, R.; Tomar, M.; Thapper, A.; Ahlquist, M.; Borbas, K. E. Photocatalytic product-selective reduction of CO2, CO, and carbonates. Chem , 2025, 102450.
45. Bhimpuria, R.; Charaf, R.; Ye, K.; et al. A Sm(II)-based catalyst for the reduction of dinitrogen, nitrite, and nitrate to ammonia or urea. Chem 2025, 11, 102547.
46. Johansen, C. M.; Boyd, E. A.; Tarnopol, D. E.; Peters, J. C. Photodriven Sm(III)-to-Sm(II) reduction for catalytic applications. J. Am. Chem. Soc. 2024, 146, 25456-61.
47. Boyd, E. A.; Shin, C.; Peters, J. C.; et al. Reductive samarium (electro)catalysis enabled by SmIII-alkoxide protonolysis. Science 2024, 385, 847.