REFERENCES
1. Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435-7.
2. Xie, Y.; Liu, Z.; Geng, Y.; et al. Uranium extraction from seawater: material design, emerging technologies and marine engineering. Chem. Soc. Rev. 2023, 52, 97-162.
3. Ye, Y.; Jin, J.; Han, W.; et al. Spontaneous electrochemical uranium extraction from wastewater with net electrical energy production. Nat. Water. 2023, 1, 887-98.
4. Yang, L.; Xiao, H.; Qian, Y.; et al. Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater. Nat. Sustain. 2022, 5, 71-80.
5. Sun, Q.; Aguila, B.; Perman, J.; et al. Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste. Nat. Commun. 2018, 9, 1644.
6. Yuan, Y.; Liu, T.; Xiao, J.; et al. DNA nano-pocket for ultra-selective uranyl extraction from seawater. Nat. Commun. 2020, 11, 5708.
7. Liu, C.; Hsu, P.; Xie, J.; et al. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat. Energy. 2017, 2, 17007.
8. Mei, D.; Liu, L.; Yan, B. Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water. Coord. Chem. Rev. 2023, 475, 214917.
9. Tamada M. Current status of technology for collection of uranium from seawater. In International seminar on nuclear war and planetary emergencies-42nd session. 2010; pp 243-52.
10. Yang, H.; Liu, X.; Hao, M.; et al. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Adv. Mater. 2021, 33, e2106621.
11. Cai, Y.; Zhang, Y.; Lv, Z.; et al. Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process. Appl. Catal. B. Environ. 2022, 310, 121343.
12. Meng, C.; Du, M.; Zhang, Z.; et al. Open-framework vanadate as efficient ion exchanger for uranyl removal. Environ. Sci. Technol. 2024, 58, 9456-65.
13. Yang, J.; Acharjya, A.; Ye, M. Y.; et al. Protonated imine-linked covalent organic frameworks for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2021, 60, 19797-803.
14. Huang, N. Y.; He, H.; Liu, S.; et al. Electrostatic attraction-driven assembly of a metal-organic framework with a photosensitizer boosts photocatalytic CO2 reduction to CO. J. Am. Chem. Soc. 2021, 143, 17424-30.
15. Shiraishi, Y.; Takii, T.; Hagi, T.; et al. Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 2019, 18, 985-93.
16. Qin, C.; Wu, X.; Zhou, W.; et al. Urea/thiourea imine linkages provide accessible holes in flexible covalent organic frameworks and dominates self-adaptivity and exciton dissociation. Angew. Chem. Int. Ed. 2025, 64, e202418830.
17. Wu, Y.; Xie, Y.; Liu, X.; et al. Functional nanomaterials for selective uranium recovery from seawater: material design, extraction properties and mechanisms. Coord. Chem. Rev. 2023, 483, 215097.
18. Liu, X.; Pang, H.; Liu, X.; et al. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation 2021, 2, 100076.
19. Tang, N.; Liang, J.; Niu, C.; et al. Amidoxime-based materials for uranium recovery and removal. J. Mater. Chem. A. 2020, 8, 7588-625.
20. Xie, Y.; Yu, L.; Chen, L.; et al. Recent progress of radionuclides separation by porous materials. Sci. China. Chem. 2024, 67, 3515-77.
21. Amadelli, R.; Maldotti, A.; Sostero, S.; Carassiti, V. Photodeposition of uranium oxides onto TiO2 from aqueous uranyl solutions. Faraday. Trans. 1991, 87, 3267.
22. Chen, T.; Yu, K.; Dong, C.; et al. Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coord. Chem. Rev. 2022, 467, 214615.
23. Li, P.; Wang, J.; Wang, Y.; et al. Photoconversion of U(VI) by TiO2: an efficient strategy for seawater uranium extraction. Chem. Eng. J. 2019, 365, 231-41.
24. Lei, J.; Liu, H.; Yuan, C.; et al. Enhanced photoreduction of U(VI) on WO3 nanosheets by oxygen defect engineering. Chem. Eng. J. 2021, 416, 129164.
25. Linsebigler, A. L.; Lu, G.; Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735-58.
26. Filippov, T. N.; Svintsitskiy, D. A.; Chetyrin, I. A.; et al. Photocatalytic and photochemical processes on the surface of uranyl-modified oxides: an in situ XPS study. Appl. Catal. A-Gen. 2018, 58, 81-90.
27. Chen, T.; Liu, B.; Li, M.; et al. Efficient uranium reduction of bacterial cellulose-MoS2 heterojunction via the synergistically effect of Schottky junction and S-vacancies engineering. Chem. Eng. J. 2021, 406, 126791.
28. Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302-36.
29. Hu, E.; Chen, Q.; Gao, Q.; et al. Cyano-functionalized graphitic carbon nitride with adsorption and photoreduction isosite achieving efficient uranium extraction from seawater. Adv. Funct. Materials. 2024, 34, 2312215.
30. Jiang, X.; Xing, Q.; Luo, X.; et al. Simultaneous photoreduction of Uranium(VI) and photooxidation of Arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl. Catal. B. Environ. 2018, 228, 29-38.
31. Li, P.; Wang, Y.; Wang, J.; et al. Carboxyl groups on g-C3N4 for boosting the photocatalytic U(VI) reduction in the presence of carbonates. Chem. Eng. J. 2021, 414, 128810.
32. Gaya, U. I.; Abdullah, A. H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C. Photochem. Rev. 2008, 9, 1-12.
33. Li, P.; Wang, J.; Wang, Y.; et al. An overview and recent progress in the heterogeneous photocatalytic reduction of U(VI). J. Photochem. Photobiol. C. Photochem. Rev. 2019, 41, 100320.
34. Kim, Y. K.; Lee, S.; Ryu, J.; Park, H. Solar conversion of seawater uranium (VI) using TiO2 electrodes. Appl. Catal. B. Environ. 2015, 163, 584-90.
35. Hu, L.; Yan, X.; Zhang, X.; Shan, D. Integration of adsorption and reduction for uranium uptake based on SrTiO3/TiO2 electrospun nanofibers. Appl. Surf. Sci. 2018, 428, 819-24.
36. He, H.; Zong, M.; Dong, F.; et al. Simultaneous removal and recovery of uranium from aqueous solution using TiO2 photoelectrochemical reduction method. J. Radioanal. Nucl. Chem. 2017, 313, 59-67.
37. Wu, Y.; Pang, H.; Liu, Y.; et al. Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ. Pollut. 2019, 246, 608-20.
38. Xu, R.; Cui, W.; Zhang, C.; et al. Vinylene-linked covalent organic frameworks with enhanced uranium adsorption through three synergistic mechanisms. Chem. Eng. J. 2021, 419, 129550.
39. Endrizzi, F.; Leggett, C. J.; Rao, L. Scientific basis for efficient extraction of uranium from seawater. I: understanding the chemical speciation of uranium under seawater conditions. Ind. Eng. Chem. Res. 2016, 55, 4249-56.
40. Endrizzi, F.; Rao, L. Chemical speciation of uranium(VI) in marine environments: complexation of calcium and magnesium ions with [(UO2)(CO3)3]4- and the effect on the extraction of uranium from seawater. Chemistry 2014, 20, 14499-506.
41. Abney, C. W.; Mayes, R. T.; Saito, T.; Dai, S. Materials for the recovery of uranium from seawater. Chem. Rev. 2017, 117, 13935-4013.
42. Shi, S.; Qian, Y.; Mei, P.; et al. Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater. Nano. Energy. 2020, 71, 104629.
43. Hao, X.; Chen, R.; Liu, Q.; et al. A novel U(vi)-imprinted graphitic carbon nitride composite for the selective and efficient removal of U(vi) from simulated seawater. Inorg. Chem. Front. 2018, 5, 2218-26.
44. Miyake, C.; Nakase, T.; Sano, Y. EPR study of uranium (V) species in photo-and electrolytic reduction processes of UO2NO3)2-2TBP. J. Nucl. Sci. Technol. 1993, 30, 1256-60.
45. Salomone, V. N.; Meichtry, J. M.; Schinelli, G.; Leyva, A. G.; Litter, M. I. Photochemical reduction of U(VI) in aqueous solution in the presence of 2-propanol. J. Photochem. Photobiol. A. Chem. 2014, 277, 19-26.
46. Bard AJ, Parsons R, Jordan J. Standard potentials in aqueous solution, 1st ed.; Routledge, 1985.
47. Salomone, V. N.; Meichtry, J. M.; Litter, M. I. Heterogeneous photocatalytic removal of U(VI) in the presence of formic acid: U(III) formation. Chem. Eng. J. 2015, 270, 28-35.
48. Lu, C.; Zhang, P.; Jiang, S.; et al. Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl. Catal. B. Environ. 2017, 200, 378-85.
49. Li, Z. J.; Huang, Z. W.; Guo, W. L.; et al. Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ. Sci. Technol. 2017, 51, 5666-74.
50. Li, H.; Zhai, F.; Gui, D.; et al. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks. Appl. Catal. B. Environ. 2019, 254, 47-54.
51. Chen, J.; Ollis, D. F.; Rulkens, W. H.; Bruning, H. Photocatalyzed deposition and concentration of soluble uranium(VI) from TiO2 suspensions. Colloids. Surf. A. Physicochem. Eng. Asp. 1999, 151, 339-49.
52. Feng, J.; Yang, Z.; He, S.; et al. Photocatalytic reduction of Uranium(VI) under visible light with Sn-doped In2S3 microspheres. Chemosphere 2018, 212, 114-23.
53. Bonato, M.; Allen, G.; Scott, T. Reduction of U(VI) to U(IV) on the surface of TiO2 anatase nanotubes. Micro. Nano. Lett. 2008, 3, 57-61.
54. Alhindawy, I. G.; Mira, H. I.; Youssef, A. O.; et al. Cobalt doped titania-carbon nanosheets with induced oxygen vacancies for photocatalytic degradation of uranium complexes in radioactive wastes. Nanoscale. Adv. 2022, 4, 5330-42.
55. Lee, S.; Kang, U.; Piao, G.; Kim, S.; Han, D. S.; Park, H. Homogeneous photoconversion of seawater uranium using copper and iron mixed-oxide semiconductor electrodes. Appl. Catal. B. Environ. 2017, 207, 35-41.
56. Wang, G.; Zhen, J.; Zhou, L.; Wu, F.; Deng, N. Adsorption and photocatalytic reduction of U(VI) in aqueous TiO2 suspensions enhanced with sodium formate. J. Radioanal. Nucl. Chem. 2015, 304, 579-85.
57. Wang, Y.; Wang, J.; Wang, J.; et al. Efficient recovery of uranium from saline lake brine through photocatalytic reduction. J. Mol. Liq. 2020, 308, 113007.
58. Wang, Y.; Wang, J.; Ding, Z.; et al. Light promotes the immobilization of U(VI) by ferrihydrite. Molecules 2022, 27, 1859.
59. Yu, K.; Jiang, P.; Yuan, H.; He, R.; Zhu, W.; Wang, L. Cu-based nanocrystals on ZnO for uranium photoreduction: plasmon-assisted activity and entropy-driven stability. Appl. Catal. B. Environ. 2021, 288, 119978.
60. Wang, T.; Zhang, Z. B.; Dong, Z.; Cao, X.; Cheng, Z.; Liu, Y. H. A facile synthesis of g-C3N4/WS2 heterojunctions with enhanced photocatalytic reduction activity of U(VI). J. Radioanal. Nucl. Chem. 2022, 331, 577-86.
61. Han, R.; Hu, M.; Zhong, Q.; et al. Perfluorooctane sulphonate induces oxidative hepatic damage via mitochondria-dependent and NF-κB/TNF-α-mediated pathway. Chemosphere 2018, 191, 1056-64.
62. Ye, Y.; Jin, J.; Chen, F.; et al. Removal and recovery of aqueous U(VI) by heterogeneous photocatalysis: progress and challenges. Chem. Eng. J. 2022, 450, 138317.
63. Gong, X.; Tang, L.; Wang, R.; et al. Achieving efficient photocatalytic uranium extraction within a record short period of 3 min by Up-conversion erbium doped ZnO nanosheets. Chem. Eng. J. 2022, 450, 138044.
64. Liu, H.; Lei, J.; Gong, C.; et al. In-situ oxidized tungsten disulfide nanosheets achieve ultrafast photocatalytic extraction of uranium through hydroxyl-mediated binding and reduction. Nano. Res. 2022, 15, 8810-8.
65. Zhang, P.; Li, H.; Wang, Y.; Song, J.; Huang, J.; Li, P. Highly efficient uranium (VI) remove from aqueous solution using nano-TiO2-anchored polymerized dopamine-wrapped magnetic photocatalyst. J. Clean. Prod. 2023, 425, 138796.
66. Lei, J.; Liu, H.; Zhou, L.; et al. Progress and perspective in enrichment and separation of radionuclide uranium by biomass functional materials. Chem. Eng. J. 2023, 471, 144586.
67. He, P.; Zhang, L.; Wu, L.; et al. Synergistic effect of the sulfur vacancy and schottky heterojunction on photocatalytic uranium immobilization: the thermodynamics and kinetics. Inorg. Chem. 2022, 61, 2242-50.
68. Liang, P.; Yuan, L.; Deng, H.; et al. Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Appl. Catal. B. Environ. 2020, 267, 118688.
69. Lu, C.; Chen, R.; Wu, X.; et al. Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance. Appl. Surf. Sci. 2016, 360, 1016-22.
70. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-8.
71. Jeon, J.; Kweon, D. H.; Jang, B. J.; Ju, M. J.; Baek, J. Enhancing the photocatalytic activity of TiO2 catalysts. Adv. Sustainable. Syst. 2020, 4, 2000197.
72. Evans, C. J.; Nicholson, G. P.; Faith, D. A.; Kan, M. J. Photochemical removal of uranium from a phosphate waste solution. Green. Chem. 2004, 6, 196-7.
73. Liu, N.; Zhang, H.; Liu, Q.; et al. Magnetron sputtering ultra-thin TiO2 films for photocatalytic reduction of uranium. Desalination 2022, 543, 116121.
74. Liu, G.; Yang, H. G.; Wang, X.; et al. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868-9.
75. Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839-42.
76. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638-41.
77. Zhang, L.; Li, H.; Li, L.; Deng, J.; Deng, W.; Zhao, Y. Photocatalytic reduction of uranyl ions over anatase and rutile nanostructured TiO2. Chem. Lett. 2013, 42, 689-90.
78. Wang, J.; Wang, Y.; Wang, W.; et al. Visible light driven Ti3+ self-doped TiO2 for adsorption-photocatalysis of aqueous U(VI). Environ. Pollut. 2020, 262, 114373.
79. Gong, X.; Tang, L.; Zou, J.; et al. Introduction of cation vacancies and iron doping into TiO2 enabling efficient uranium photoreduction. J. Hazard. Mater. 2022, 423, 126935.
80. Dong, Z.; Zhang, Z.; Li, Z.; et al. 3D structure aerogels constructed by reduced graphene oxide and hollow TiO2 spheres for efficient visible-light-driven photoreduction of U(VI) in air-equilibrated wastewater. Environ. Sci. Nano. 2021, 8, 2372-85.
81. Wan, H.; Li, Y.; Wang, M.; et al. Boosting efficient U(VI) immobilization via synergistic Schottky heterojunction and hierarchical atomic-level injected engineering. Chem. Eng. J. 2022, 430, 133139.
82. Dong, Z.; Hu, S.; Li, Z.; et al. Biomimetic photocatalytic system designed by spatially separated cocatalysts on Z-scheme heterojunction with identified charge-transfer processes for boosting removal of U(VI). Small 2023, 19, e2300003.
83. Dong, Z.; Meng, C.; Li, Z.; et al. Novel Co3O4@TiO2@CdS@Au double-shelled nanocage for high-efficient photocatalysis removal of U(VI): roles of spatial charges separation and photothermal effect. J. Hazard. Mater. 2023, 452, 131248.
84. Lucena, R.; Fresno, F.; Conesa, J. C. Hydrothermally synthesized nanocrystalline tin disulphide as visible light-active photocatalyst: spectral response and stability. Appl. Catal. A. Gen. 2012, 415-416, 111-7.
85. Liu, Q.; Tan, X.; Wang, S.; et al. MXene as a non-metal charge mediator in 2D layered CdS@Ti3C2 @TiO2 composites with superior Z-scheme visible light-driven photocatalytic activity. Environ. Sci. Nano. 2019, 6, 3158-69.
86. Yu, J.; Yu, Y.; Zhou, P.; Xiao, W.; Cheng, B. Morphology-dependent photocatalytic H2-production activity of CdS. Appl. Catal. B. Environ. 2014, 156-157, 184-91.
87. Zou, L.; Wang, H. R.; Wang, X. High efficient photodegradation and photocatalytic hydrogen production of CdS/BiVO4 Heterostructure through Z-scheme process. ACS. Sustain. Chem. Eng. 2017, 5, 303-309.
88. Chava, R. K.; Do, J. Y.; Kang, M. Enhanced photoexcited carrier separation in CdS-SnS2 heteronanostructures: a new 1D-0D visible-light photocatalytic system for the hydrogen evolution reaction. J. Mater. Chem. A. 2019, 7, 13614-28.
89. Zhang, K.; Fujitsuka, M.; Du, Y.; Majima, T. 2D/2D heterostructured CdS/WS2 with efficient charge separation improving H2 evolution under visible light irradiation. ACS. Appl. Mater. Interfaces. 2018, 10, 20458-66.
90. Lin, G.; Zheng, J.; Xu, R. Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities. J. Phys. Chem. C. 2008, 112, 7363-70.
91. Han, Z.; Chen, G.; Li, C.; Yu, Y.; Zhou, Y. Preparation of 1D cubic Cd0.8 Zn0.2 S solid-solution nanowires using levelling effect of TGA and improved photocatalytic H2-production activity. J. Mater. Chem. A. 2015, 3, 1696-702.
92. Liang, P.; Yuan, L.; Du, K.; et al. Photocatalytic reduction of uranium(VI) under visible light with 2D/1D Ti3C2/CdS. Chem. Eng. J. 2021, 420, 129831.
93. Rehman, S. U.; Wang, J.; Wu, G.; Ali, S.; Xian, J.; Mahmood, N. Unraveling the photocatalytic potential of transition metal sulfide and selenide monolayers for overall water splitting and photo-corrosion inhibition. J. Mater. Chem. A. 2024, 12, 6693-702.
94. Zhang, N.; Xing, Z.; Li, Z.; Zhou, W. Sulfur vacancy engineering of metal sulfide photocatalysts for solar energy conversion. Chem. Catalysis. 2023, 3, 100375.
95. Liu, J.; Wang, H.; Antonietti, M. Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis. Chem. Soc. Rev. 2016, 45, 2308-26.
96. Cheng, L.; Zhang, H.; Li, X.; Fan, J.; Xiang, Q. Carbon-graphitic carbon nitride hybrids for heterogeneous photocatalysis. Small 2021, 17, e2005231.
97. Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150-76.
98. Li, C.; Xu, Y.; Tu, W.; Chen, G.; Xu, R. Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green. Chem. 2017, 19, 882-99.
99. Bhanderi, D.; Lakhani, P.; Modi, C. K. Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: a comprehensive review. RSC. Sustainability. 2024, 2, 265-87.
100. Wang, L.; Wang, K.; He, T.; Zhao, Y.; Song, H.; Wang, H. Graphitic carbon nitride-based photocatalytic materials: preparation strategy and application. ACS. Sustainable. Chem. Eng. 2020, 8, 16048-85.
101. Yu, K.; Li, Y.; Cao, X.; et al. In-situ constructing amidoxime groups on metal-free g-C3N4 to enhance chemisorption, light absorption, and carrier separation for efficient photo-assisted uranium(VI) extraction. J. Hazard. Mater. 2023, 460, 132356.
102. Wei, W.; Luo, J.; Liu, S.; Zhou, Y.; Ma, J. Enhancing the photocatalytic performance of g-C3N4 by using iron single-atom doping for the reduction of U(VI) in aqueous solutions. J. Solid. State. Chem. 2022, 312, 123160.
103. Zhao, J.; Lyu, C.; Zhang, R.; Han, Y.; Wu, Y.; Wu, X. Self-cleaning and regenerable nano zero-valent iron modified PCN-224 heterojunction for photo-enhanced radioactive waste reduction. J. Hazard. Mater. 2023, 442, 130018.
104. Wang, J.; Li, P.; Wang, Y.; et al. New strategy for the persistent photocatalytic reduction of U(VI): utilization and storage of solar energy in K+ and cyano co-decorated poly(heptazine imide). Adv. Sci. 2023, 10, e2205542.
105. Nie, Y.; Zhu, Y.; Lu, X.; et al. Cu doped crystalline carbon nitride with increased carrier migration efficiency for uranyl photoreduction. Chem. Eng. J. 2023, 477, 146908.
106. Xue, J.; Wang, B.; Li, Z.; Xie, Z.; Le, Z. Bromine doped g-C3N4 with enhanced photocatalytic reduction in U(VI). Res. Chem. Intermed. 2022, 48, 49-65.
107. Chen, T.; Li, M.; Zhou, L.; et al. Harmonizing the energy band between adsorbent and semiconductor enables efficient uranium extraction. Chem. Eng. J. 2021, 420, 127645.
108. Meng, Q.; Yang, X.; Wu, L.; et al. Metal-free 2D/2D C3N5/GO nanosheets with customized energy-level structure for radioactive nuclear wastewater treatment. J. Hazard. Mater. 2022, 422, 126912.
109. Ma, Y.; Liu, L.; Zhao, S.; et al. Molecular engineering of multivariate porous aromatic frameworks for recovery of dispersed uranium resources. Adv. Funct. Mater. 2024, 34, 2410778.
110. Yu, F.; Zhu, Z.; Wang, S.; et al. Tunable perylene-based donor-acceptor conjugated microporous polymer to significantly enhance photocatalytic uranium extraction from seawater. Chem. Eng. J. 2021, 412, 127558.
111. Yu, F.; Yu, S.; Li, C.; et al. Molecular engineering of biomimetic donor-acceptor conjugated microporous polymers with full-spectrum response and an unusual electronic shuttle for enhanced uranium(VI) photoreduction. Chem. Eng. J. 2023, 466, 143285.
112. Chen, L.; Chen, B.; Kang, J.; et al. The synthesis of a novel conjugated microporous polymer and application on photocatalytic removal of uranium(VI) from wastewater under visible light. Chem. Eng. J. 2022, 431, 133222.
113. Kumar, V.; Singh, V.; Kim, K.; Kwon, E. E.; Younis, S. A. Metal-organic frameworks for photocatalytic detoxification of chromium and uranium in water. Coord. Chem. Rev. 2021, 447, 214148.
114. Zhong, X.; Liu, Y.; Zeng, W.; Zhu, Y.; Hu, B. Excellent photoreduction performance of U(VI) on metal organic framework/covalent organic framework heterojunction by solar-driven. Sep. Purif. Technol. 2022, 285, 120405.
115. Younis, S. A.; Kwon, E. E.; Qasim, M.; et al. Metal-organic framework as a photocatalyst: progress in modulation strategies and environmental/energy applications. Prog. Energy. Combust. Sci. 2020, 81, 100870.
116. Qiu, J.; Zhang, X. F.; Zhang, X.; et al. Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction. J. Hazard. Mater. 2018, 349, 234-41.
117. Zhang, H.; Liu, W.; Li, A.; et al. Three mechanisms in one material: uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew. Chem. Int. Ed. 2019, 58, 16110-4.
118. Liu, X.; Peng, Z.; Lei, L.; et al. Synergistic effect of photocatalytic U(VI) reduction and chlorpyrifos degradation by bifunctional type-II heterojunction MOF525@BDMTp with high carrier migration performance. Appl. Catal. B. Environ. 2024, 342, 123460.
119. Bi, R.; Liu, X.; Lei, L.; et al. Core-shell MOF@COF photocatalysts for synergistic enhanced U(VI) and tetracycline cleanup through space and carrier separation. Chem. Eng. J. 2024, 485, 150026.
120. Chen, M.; Liu, T.; Zhang, X.; et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv. Funct. Mater. 2021, 31, 2100106.
121. Cui, W. R.; Li, F. F.; Xu, R. H.; et al. Regenerable covalent organic frameworks for photo-enhanced uranium adsorption from seawater. Angew. Chem. Int. Ed. 2020, 59, 17684-90.
122. Hao, M.; Xie, Y.; Liu, X.; et al. Modulating uranium extraction performance of multivariate covalent organic frameworks through donor-acceptor linkers and amidoxime nanotraps. JACS. Au. 2023, 3, 239-51.
123. Zhang, S.; Chen, L.; Qu, Z.; et al. Confining Ti-oxo clusters in covalent organic framework micropores for photocatalytic reduction of the dominant uranium species in seawater. Chem 2023, 9, 3172-84.
124. Chen, Z.; Wang, J.; Hao, M.; et al. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat. Commun. 2023, 14, 1106.
125. Yu, F.; Li, C.; Li, W.; et al. Π-skeleton tailoring of olefin-linked covalent organic frameworks achieving low exciton binding energy for photo-enhanced uranium extraction from seawater. Adv. Funct. Mater. 2024, 34, 2307230.
126. Yang, H.; Hao, M.; Xie, Y.; et al. Tuning local charge distribution in multicomponent covalent organic frameworks for dramatically enhanced photocatalytic uranium extraction. Angew. Chem. Int. Ed. 2023, 62, e202303129.
127. Li, Z.; Dong, Z.; Zhang, Z.; et al. Covalent organic frameworks for boosting H2O2 photosynthesis via the synergy of multiple charge transfer channels and polarized field. Angew. Chem. Int. Ed. 2025, 64, e202420218.
128. Li, Z. F.; Dong, Z. M.; Zhang, Z. B.; at, al. Covalent organic frameworks for boosting H2O2 photosynthesis via the synergy of multiple charge transfer channels and polarized field. Angew. Chem. Int. Ed. 2024, 64, e202420218.
129. Guo, L.; Huang, Z.; Gong, L.; Luo, F. Boosting photosynthesis of H2O2 using topological defects in covalent organic framework for selective extraction of uranium through an innovative mineralization strategy. CCS. Chem. 2024.





